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Example of non-unique factorization

Factorization in rings of algebraic integers is not necessarily unique.
Example: Z[3i] ⊂ Q(i)
The elements 3 + 6i, 3− 6i, 3, 5 are all irreducible.

(3 + 6i)(3− 6i) = 32 · 5

This phenomenon is called non-unique factorization.

The phenomenon of non-unique factorization is purely multiplicative.
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Non-unique factorization in maximal orders

Let K be an algebraic number field, OK be the ring of integers, i.e. the
maximal order, of K.
Despite for the integers Z factorization in such a ring OK needs no longer
to be unique.
But these rings OK are integrally closed and indeed they are Dedekind
domains. Thus their (arithmetic) structure can be described well in the
terms of classical ideal theory.
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Non-unique factorization in non-principal orders

Non-principal orders (subrings O ⊂ OK) are not integrally closed anymore.
In particular, O is never factorial.

The arithmetic of a non-principal order depends on the Picard group, on the
localizations at singular primes and on a yet not understood interplay
between these data.
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Introduction

Let K be an algebraic number field, OK be the maximal order in K, and
let P = {p1, . . . , ps} be a set of primes that are inert in OK (that is,
p1, . . . , ps are prime in OK).
Then

O = Z+ p1 · . . . · psOK
is a non-principal order in K such that all localizations are half-factorial.

What about the arithmetic of such a non-principal order?

4(O) min4(O)
ρ(O) c(O)

}
invariants characterizing the arithmetic

These invariants measure the deviation from unique-factorization.

unique-factorization ⇔ 4(O) = ∅, min4(O) = 0, ρ(O) = 1, c(O) = 0
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Some definitions

By a monoid we always mean a commutative semigroup with identity which
satisfies the cancellation law (that is, if a, b, c ∈ H with ab = ac, then
b = c follows).

Let H be a monoid. We denote by H× the set of invertible elements of H,
and we say that H is reduced if H× = {1}.
Let Hred = H/H× = {aH×|a ∈ H} be the associated reduced monoid,
and q(H) a (the) quotient group of H.

Let R be a domain. Then (R• = R\{0}, ·) is a monoid, and (R•)red is
isomorphic to the monoid of nonzero principal ideals H(R) = {aR|a ∈ R•}.
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Some definitions

Let H and D be monoids.
A homomorphism ϕ : H → D is called a divisor homomorphism if
ϕ(u)|ϕ(v) implies u|v for all u, v ∈ H.
H ⊂ D is called saturated if the embedding H ↪→ D is a divisor
homomorphism (that is, if u|Dv implies u|Hv for all u, v ∈ H).

A homomorphism θ : H → D is called cofinal if for every a ∈ D there exists
u ∈ H such that a | θ(u).
H ⊂ D is called cofinal if the embedding H ↪→ D is cofinal (that is, for
every a ∈ D there exists u ∈ H such that a | u).

A monoid F is called free (abelian, with basis P ⊂ F ) if every a ∈ F has a
unique representation of the form

a =
∏
p∈P

pvp(a) with vp(a) ∈ N0 and vp(a) = 0 for almost all p ∈ P

We set F = F(P ).
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Factorizations

Let H be an atomic monoid and a ∈ H\H×.
A factorization of a (in H) is a decomposition of a into a product of
irreducible elements (atoms), that is

a = u1 · . . . · un for n ∈ N and u1, . . . , un ∈ A(H)

Then this n is called a length of a (in H).

The set
L(a) = {n ∈ N|n is a length of a}

is called the set of lengths (of a).

We call H half-factorial if |L(a)| = 1 for all a ∈ H\H×.
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Set of distances

For a finite subset L = {a1, . . . , at} ⊂ Z (a1 < a2 < . . . < at) let

4(L) = {aν+1 − aν |ν ∈ [1, t− 1]} ⊂ N

denote the set of (successive) distances of L. Then

4(H) =
⋃
a∈H
4(L(a)) ⊂ N

denotes the set of distances of H.
Clearly, H is half-factorial if and only if 4(H) = ∅.

We call min4(H) the minimum distance of H and we set min4(H) = 0
if 4(H) = ∅.
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Orders with “big” class groups

Theorem

Let O be an order in an algebraic number field and |PicO| ≥ 3.
Then we have

min4(O) = 1

c(O) ≥ 3

ρ(O) > 1, i.e. O is not half-factorial.

But: What can we say about these invariants if |Pic(O)| ≤ 2?
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Maximal orders

Theorem

Let OK be the maximal order of an algebraic number field K.
Then

OK is factorial if and only if |Pic(OK)| = 1.

OK is half-factorial if and only if |Pic(OK)| ≤ 2.

Proof.

The first part was already known by Kummer in the 19th century and the
second part by Carlitz in 1960.

But: This does not carry over to non-principal orders.
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Maximal orders

Corollary

Let OK be the maximal order of an algebraic number field K.
Then

min4(OK) ≤ 1

But: This does not carry over to non-principal orders.
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Our situation

Let O be a non-principal order in an algebraic number field K, OK be the
corresponding maximal order, f = (O : OK) be the conductor,
P = {p ∈ X(O)|p 6⊃ f}, P∗ = {p ∈ X(O)|p ⊃ f} and T =

∏
p∈P∗(O•p)red.

We have the following isomorphisms

I∗(O)→̃
∐

p∈X(O)

(O•p)red→̃F(P)× T

The diagonal embedding induces a cofinal divisor homomorphism

ϕ : O• →
∐

p∈X(O)

(O•p)red→̃F(P)× T

and we set H = ϕ(O•).
Then H ∼= (O•)red and H ⊂ F(P)× T is a saturated and cofinal
submonoid and Pic(O) = C(ϕ) = (F(P)× T )/H.
We identify these groups.
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Block monoids

B(H) = B(O) ⊂ F(Pic(O))× T

The canonical map

βO :

{
O• → B(H)

a 7→
(∏

p∈P [p]
vp(a)

)
(aO×p )p∈P∗

is a transfer homomorphism.
The arithmetical structures of O• and B(H) are almost identical.
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B(Pic(O)) ⊂ B(H)

Denote by B(Pic(O)) the block monoid over Pic(O).
Then B(Pic(O)) ⊂ B(H) is a divisor closed submonoid.

Immediate consequences

A(B(Pic(O))) ⊂ A(B(H)), i.e. each atom of B(Pic(O)) is an atom
of B(H).

4(B(Pic(O))) ⊂ 4(B(H)).

If |Pic(O)| ≥ 3 then 1 ∈ 4(B(Pic(O))) and thus
I min4(B(H)) = 1
I c(H) ≥ 3
I ρ(H) > 1
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Strategy

H ⊂ F(P)× T saturated

For an order O with half-factorial localizations let P∗ = {p1, . . . , pr}.

Di
∼= (O•pi)red for all i = 1, . . . , r

⇒ Di are half-factorial finitely primary monoids, i.e. they have a nice
structure.

Strategy: Use their structure and G = q(D/H) (=class group) to
determine the arithmetic of H.
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Theorem

Let O be an order in an algebraic number field such that all localizations
are half-factorial and |Pic(O)| ≤ 2.
Then we have

1 ρ(O) ∈ {1, 32 , 2}.
2 c(O) ∈ {2, 3} if ρ(O) = 1.

3 c(O) = 3 and 4(O) = {1} if ρ(O) = 3
2 .

4 c(O) = 4 and 4(O) = {1, 2} if and only if ρ(O) = 2.

5 min4(O) ≤ 1.

In particular, if all localizations of O are finitely primary monoids of
exponent 1 then we have c(O) = 2 if ρ(O) = 1, and therefore

c(O) = 2ρ(O) ∈ {2, 3, 4}

For orders in quadratic or cubic number fields this condition is always
fulfilled.
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Corollary

Let O be an order in an algebraic number field such that all localizations
are half-factorial.
If all localizations of O are finitely primary monoids of exponent 1 then the
following are equivalent:

1 O is half-factorial.

2 c(O) = 2.

In particular, for quadratic or cubic number fields the condition is always
fulfilled.

Corollary

Let O be an order in an algebraic number field such that all localizations
are half-factorial.
Then

min4(O) ≤ 1
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