Non-principal orders in algebraic number fields with half-factorial localizations

Andreas Philipp

Institute for Mathematics and Scientific Computing Karl-Franzens University Graz

> 9th July 2009 26èmes Journées Arithmétiques Université de Saint-Étienne

Saint-Étienne, 9th July 2009

This work is supported by the FWF Austrian Science Found (FWF Grant P18779-N13).

Table of contents

- Introduction
 - Example of non-unique factorization
 - Basic facts about non-unique factorization in orders
 - Some definitions
 - Important invariants
- 2 Basic facts
 - Maximal orders
- 3 Connection between rings and monoids
 - Our situation
 - Block monoids
 - Strategy
- Main result
 - Easy consequences

Example of non-unique factorization

Factorization in rings of algebraic integers is not necessarily unique.

Example: $\mathbb{Z}[3i] \subset \mathbb{Q}(i)$

The elements 3+6i, 3-6i, 3, 5 are all irreducible.

$$(3+6i)(3-6i) = 3^2 \cdot 5$$

This phaenomenon is called non-unique factorization.

The phaenomenon of non-unique factorization is purely multiplicative.

Non-unique factorization in maximal orders

Let K be an algebraic number field, \mathcal{O}_K be the ring of integers, i.e. the maximal order, of K.

Despite for the integers $\mathbb Z$ factorization in such a ring $\mathcal O_K$ needs no longer to be unique.

But these rings \mathcal{O}_K are integrally closed and therefore so called Dedekind domains. Thus their (arithmetic) structure can be described well in the terms of classical ideal theory.

Non-unique factorization in non-principal orders

Non-principal orders (subrings $\mathcal{O} \subset \mathcal{O}_K$) are not integrally closed anymore. In particular, \mathcal{O} is never factorial.

The arithmetic of a non-prinicipal order depends on the Picard group, on the localizations at singular primes and on a yet not understood interplay between these data.

Introduction

Let K be an algebraic number field, \mathcal{O}_K be the maximal order in K, and let $\mathcal{P}=\{p_1,\ldots,p_s\}$ be a set of primes that are inert in \mathcal{O}_K (that is, p_1,\ldots,p_s are prime in \mathcal{O}_K).

Then

$$\mathcal{O}=\mathbb{Z}+p_1\cdot\ldots\cdot p_s\mathcal{O}_K$$

is a non-principal order in ${\cal K}$ such that all localizations are half-factorial.

What about the arithmetic of such a non-principal order?

$$\left. \begin{array}{cc} \triangle(\mathcal{O}) & \min \triangle(\mathcal{O}) \\ \rho(\mathcal{O}) & \mathsf{c}(\mathcal{O}) \end{array} \right\} \quad \text{invariants characterizing the arithmetic}$$

These invariants measure the deviation from unique-factorization.

unique-factorization $\Leftrightarrow \triangle(\mathcal{O}) = \emptyset, \, \min \triangle(\mathcal{O}) = 0, \, \rho(\mathcal{O}) = 1, \, \mathsf{c}(\mathcal{O}) = 0$

Some definitions

By a *monoid* we always mean a commutative semigroup with identity which satisfies the cancellation law (that is, if $a,\,b,\,c\in H$ with ab=ac, then b=c follows).

Let H be a monoid. We denote by H^{\times} the set of invertible elements of H, and we say that H is reduced if $H^{\times}=\{1\}$.

Let $H_{\text{red}} = H/H^{\times} = \{aH^{\times} | a \in H\}$ be the associated reduced monoid, and q(H) a (the) quotient group of H.

Let R be a domain. Then $(R^{\bullet} = R \setminus \{0\}, \cdot)$ is a monoid, and $(R^{\bullet})_{\mathrm{red}}$ is isomorphic to the monoid of nonzero principal ideals $\mathcal{H}(R) = \{aR | a \in R^{\bullet}\}$.

Some definitions

Let H and D be monoids.

A homomorphism $\varphi: H \to D$ is called a *divisor homomorphism* if $\varphi(u)|\varphi(v)$ implies u|v for all $u, v \in H$.

 $H \subset D$ is called *saturated* if the embedding $H \hookrightarrow D$ is a divisor homomorphism (that is, if $u|_Dv$ implies $u|_Hv$ for all $u, v \in H$).

A homomorphism $\theta: H \to D$ is called *cofinal* if for every $a \in D$ there exists $u \in H$ such that $a \mid \theta(u)$.

 $H \subset D$ is called *cofinal* if the embedding $H \hookrightarrow D$ is cofinal (that is, for every $a \in D$ there exists $u \in H$ such that $a \mid u$).

A monoid F is called *free* (abelian, with basis $P \subset F$) if every $a \in F$ has a unique representation of the form

$$a=\prod_{p\in P}p^{\mathsf{v}_p(a)}\quad ext{with } \mathsf{v}_p(a)\in \mathbb{N}_0 \text{ and } \mathsf{v}_p(a)=0 \text{ for almost all } p\in P$$

We set $F = \mathcal{F}(P)$.

Factorizations

Let H be an atomic monoid and $a \in H \backslash H^{\times}$.

A factorization of a (in H) is a decomposition of a into a product of irreducible elements (atoms), that is

$$a = u_1 \cdot \ldots \cdot u_n$$
 for $n \in \mathbb{N}$ and $u_1, \ldots, u_n \in \mathcal{A}(H)$

Then this n is called a *length* of a (in H).

The set

$$\mathsf{L}(a) = \{n \in \mathbb{N} | n \text{ is a length of } a\}$$

is called the set of lengths (of a).

We call H half-factorial if |L(a)| = 1 for all $a \in H \backslash H^{\times}$.

Set of distances

For a finite subset $L = \{a_1, \ldots, a_t\} \subset \mathbb{Z} \ (a_1 < a_2 < \ldots < a_t)$ let

$$\triangle(L) = \{a_{\nu+1} - a_{\nu} | \nu \in [1, t-1]\} \subset \mathbb{N}$$

denote the set of (successive) distances of L. Then

$$\triangle(H) = \bigcup_{a \in H} \triangle(\mathsf{L}(a)) \subset \mathbb{N}$$

denotes the set of distances of H.

Clearly, H is half-factorial if and only if $\triangle(H) = \emptyset$.

We call $\min \triangle(H)$ the *minimum distance* of H and we set $\min \triangle(H) = 0$ if $\triangle(H) = \emptyset$.

Orders with "big" class groups

Theorem

Let $\mathcal O$ be an order in an algebraic number field and $|\operatorname{Pic} \mathcal O| \geq 3$. Then we have

- $\min \triangle(\mathcal{O}) = 1$
- $c(\mathcal{O}) \geq 3$
- $\rho(\mathcal{O}) > 1$, i.e. \mathcal{O} is not half-factorial.

But: What can we say about these invariants if $|\operatorname{Pic}(\mathcal{O})| \leq 2$?

Maximal orders

Theorem

Let \mathcal{O}_K be the maximal order of an algebraic number field K. Then

- \mathcal{O}_K is factorial if and only if $|\operatorname{Pic}(\mathcal{O}_K)| = 1$.
- \mathcal{O}_K is half-factorial if and only if $|\operatorname{Pic}(\mathcal{O}_K)| \leq 2$.

But: This does not carry over to non-principal orders.

Proof.

This was shown in [Carlitz, 1960].

Maximal orders

Corollary

Let \mathcal{O}_K be the maximal order of an algebraic number field K. Then

$$\min \triangle(\mathcal{O}_K) \leq 1$$

But: This does not carry over to non-principal orders.

Our situation

Let $\mathcal O$ be a non-principal order in an algebraic number field K, $\mathcal O_K$ be the corresponding maximal order, $\mathfrak f=(\mathcal O:\mathcal O_K)$ be the conductor, $\mathcal P=\{\mathfrak p\in\mathfrak X(\mathcal O)|\mathfrak p\not\supset\mathfrak f\},\ \mathcal P^*=\{\mathfrak p\in\mathfrak X(\mathcal O)|\mathfrak p\supset\mathfrak f\}\ \text{and}\ T=\prod_{\mathfrak p\in\mathcal P^*}(\mathcal O^\bullet_{\mathfrak p})_{\mathrm{red}}.$ We have the following isomorphisms

$$\mathcal{I}^*(\mathcal{O})\tilde{\to}\coprod_{\mathfrak{p}\in\mathfrak{X}(\mathcal{O})}(\mathcal{O}_{\mathfrak{p}}^{\bullet})_{\mathrm{red}}\tilde{\to}\mathcal{F}(\mathcal{P})\times T$$

The diagonal embedding induces a cofinal divisor homomorphism

$$\varphi: \mathcal{O}^{\bullet} \to \coprod_{\mathfrak{p} \in \mathfrak{X}(\mathcal{O})} (\mathcal{O}_{\mathfrak{p}}^{\bullet})_{\mathrm{red}} \tilde{\to} \mathcal{F}(\mathcal{P}) \times T$$

and we set $H = \varphi(\mathcal{O}^{\bullet})$.

Then $H\cong (\mathcal{O}^{\bullet})_{\mathrm{red}}$ and $H\subset \mathcal{F}(\mathcal{P})\times T$ is a saturated and cofinal submonoid and $\mathrm{Pic}(\mathcal{O})=\mathcal{C}(\varphi)=(\mathcal{F}(\mathcal{P})\times T)/H$.

We identify these groups.

Block monoids

$$\mathcal{B}(H) = \mathcal{B}(\mathcal{O}) \subset \mathcal{F}(\text{Pic}(\mathcal{O})) \times T = \mathcal{F}(\mathcal{P}) \times T$$

The canonical map

$$\beta_{\mathcal{O}}: \left\{ \begin{array}{ccc} \mathcal{O}^{\bullet} & \to & \mathcal{B}(H) \\ a & \mapsto & \left(\prod_{\mathfrak{p}\in\mathcal{P}}[\mathfrak{p}]^{\mathsf{v}_{\mathfrak{p}}(a)}\right) (a\mathcal{O}_{\mathfrak{p}}^{\times})_{\mathfrak{p}\in\mathcal{P}^{*}} \end{array} \right.$$

is a transfer homomorphism.

Thus the arithmetic of \mathcal{O}^{\bullet} and $\mathcal{B}(H)$ is "identical".

$\mathcal{B}(\operatorname{Pic}(\mathcal{O})) \subset \mathcal{B}(H)$

Denote by $\mathcal{B}(\operatorname{Pic}(\mathcal{O}))$ the block monoid over $\operatorname{Pic}(\mathcal{O})$. Then $\mathcal{B}(\operatorname{Pic}(\mathcal{O})) \subset \mathcal{B}(H)$ is a divisor closed submonoid.

Immediate consequences

- $\mathcal{A}(\mathcal{B}(\text{Pic}(\mathcal{O}))) \subset \mathcal{A}(\mathcal{B}(H))$, i.e. each atom of $\mathcal{B}(\text{Pic}(\mathcal{O}))$ is an atom of $\mathcal{B}(H)$.
- $\triangle(\mathcal{B}(\operatorname{Pic}(\mathcal{O}))) \subset \triangle(\mathcal{B}(H))$.
- If $|\operatorname{Pic}(\mathcal{O})| \geq 3$ then $1 \in \triangle(\mathcal{B}(\operatorname{Pic}(\mathcal{O})))$ and thus
 - $\min \triangle(\mathcal{B}(H)) = 1$
 - $c(H) \geq 3$
 - $\rho(H) > 1$

Strategy

$$H \subset \mathcal{F}(\mathcal{P}) \times T$$
 saturated

For an order $\mathcal O$ with half-factorial localizations let $\mathcal P^*=\{\mathfrak p_1,\dots,\mathfrak p_r\}.$

$$D_i \cong (\mathcal{O}_{\mathfrak{p}_i}^{\bullet})_{\mathrm{red}}$$
 for all $i = 1, \dots, r$

 \Rightarrow D_i are half-factorial finitely primary monoids, i.e. they have a nice structure.

Strategy: Use their structure and G = q(D/H) (=class group) to determine the arithmetic of H.

Theorem

Let \mathcal{O} be an order in an algebraic number field such that all localizations are half-factorial and $|\operatorname{Pic}(\mathcal{O})| \leq 2$.

Then we have

2
$$c(\mathcal{O}) \in \{2,3\} \text{ if } \rho(\mathcal{O}) = 1.$$

•
$$c(\mathcal{O})=4$$
 and $\triangle(\mathcal{O})=\{1,2\}$ if and only of $\rho(\mathcal{O})=2$.

In particular, if all localizations of $\mathcal O$ are finitely primary monoids of exponent 1 then we have $\mathsf c(\mathcal O)=2$ if $\rho(\mathcal O)=1$, and therefore

$$\mathsf{c}(\mathcal{O}) = 2\rho(\mathcal{O}) \in \{2, 3, 4\}$$

For orders in quadratic or cubic number fields this condition is always fulfilled.

Corollary

Let \mathcal{O} be an order in an algebraic number field such that all localizations are half-factorial.

If all localizations of $\mathcal O$ are finitely primary monoids of exponent 1 then the following are equivalent:

- O is half-factorial.
- **2** $c(\mathcal{O}) = 2$.

In particular, for quadratic or cubic number fields the condition is always fulfilled.

Corollary

Let $\mathcal O$ be an order in an algebraic number field such that all localizations are half-factorial.

Then

$$\min \triangle(\mathcal{O}) \le 1$$

References

In Proc. Amer. Math. Soc. number 11 pp. 391-392,.

Geroldinger, A. & Halter-Koch, F. (2006).

Non-Unique Factorizations: Algebraic, Combinatorial and Analytic Theory.

Pure and Applied Mathematics, Chapman & Hall.