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1.1. INTRODUCTION

CHAPTER 1

Introduction and preliminaries

1.1. Introduction

The maximal order OK of an algebraic number field is a Dedekind domain, and its
arithmetic is completely determined by its Picard group Pic(OK). In particular, OK is
factorial if and only if its Picard group is trivial and OK is half-factorial if and only if
# Pic(OK) ≤ 2; for reference see [4]. In contrast, non-principal orders are not integrally
closed, hence they are never factorial, and their arithmetic depends not only on their
Picard group but also on the localizations at singular primes. Though, a non-principal
order O with # Pic(O) ≥ 3 inherits many arithmetical properties from the maximal order;
in particular it cannot be half-factorial, see Theorem 3.1.18. In contrast, only little is
known about the arithmetic of non-principal orders whose Picard group has at most
two elements, even if they are locally half-factorial—see Definition 1.2.12 for a precise
definition. Exactly in this situation we formulate our main results in Chapter 3—see
Theorem 3.1.18, Corollary 3.1.21, and, for quadratic number fields, Corollary 3.1.25—by
using the semi-group theoretic approach from Chapter 2.

In Chapter 2, the monoid of relations is used to study various invariants of non-unique
factorizations. These are the elasticity, the tame degree, the catenary degree, and the
monotone catenary degree; for a statement of the formal definitions, see Section 1.2; and
for recent work on the catenary degree, see, for example, [13], and for former work on the
monotone catenary degree, see [10], [11], and [12]. The monoid of relations associated
to a monoid and a certain invariant µ(·) have been used to study all these invariants but
the monotone catenary degree. Investigations of this type started only fairly recently. In
[5], such investigations were carried out for finitely generated monoids using the results
from [7] and [26]. In [6] and [19], these results, and expansions thereof, were applied in
the investigation of numerical monoids, which are (certain) finitely generated submonoids
of the non-negative integers; for a detailed exposition of the theory of numerical monoids
and applications, see, e.g., the monograph [24]. Even more recently, in [22]—included as
Section 2.1 with slight changes in the notation in this thesis—additionally, these methods
were extended to general not necessarily finitely generated monoids. In [3], the monotone
catenary degree was studied. Now Section 2.2 extends this approach by applying the same
methods as in [22] and in Section 2.1 in the computation of the monotone catenary degree.
Based on these results, we can formulate an algorithmic approach for the computation of
the studied invariants in the situation of T -block monoids in Section 2.3.

In Chapter 3, we start by investigating half-factorial finitely primary monoids. These
turn out to have a very nice structure; see Lemma 3.1.3. Then we exploit this structure
together with results from Chapter 2 to describe precisely the arithmetic of (non-principal)
locally half-factorial orders in algebraic number fields—see Definition 1.2.12 for the precise
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1.2. PRELIMINARIES

definition; see Theorem 3.1.18. Even more detailed results can be formulated for the case of
quadratic or cubic number fields; see Corollary 3.1.21. Then localizations of half-factorial
orders in algebraic number fields are studied and a characterization of half-factorial orders
in quadratic number fields in terms of the class group and the image of the unit groups of
the localizations in the class group is given; see Corollary 3.1.25. In Section 3.2, first results
for locally half-factorial orders with cyclic class groups are formulated; see Corollary 3.2.5.

In Chapter 4, we use some special type of finitely primary monoids, so called strict
monoids—for a statement of the formal definition, see Definition 4.1.3—to calculate the
minimum distance in special orders in algebraic function fields and in algebraic number
fields.

1.2. Preliminaries

Let N denote the set of positive integers and let N0 = N ] {0}. For integers n, m ∈ Z,
we set [n,m] = {x ∈ Z | n ≤ x ≤ m}. By convention, the supremum of the empty set is
zero and we set 0

0 = 1. The term “monoid” always means a commutative, cancellative
semigroup with unit element. For a monoid H, we denote by H× the set of invertible
elements of H. If, for two elements a, b ∈ H, there is some u ∈ H× such that a = ub,
then we call a and b associated. In this case, we write a ∼ b. We call H reduced if
H× = {1} and call Hred = H/H× the reduced monoid associated with H. Of course, Hred

is always reduced, and the arithmetic of H is determined by Hred. Let H be an atomic
monoid. We denote by A(H) its set of atoms, by A(Hred) the set of atoms of Hred, by
Z(H) = F(A(Hred)) the free monoid with basis A(Hred), and by πH : Z(H) → Hred the
unique homomorphism such that πH |A(Hred) = id. We call Z(H) the factorization monoid
and πH the factorization homomorphism of H. For a ∈ H, we denote by Z(a) = π−1

H (aH×)
the set of factorizations of a and denote by L(a) = {|z| | z ∈ Z(a)} the set of lengths of a.
We call L(H) = {L(a) | a ∈ H} the system of sets of lengths of H. A monoid H is called
half-factorial, if #L(a) = 1 for all a ∈ H, and factorial if #Z(a) = 1 for all a ∈ H.

In the following, we briefly recall the definitions of all the invariants of non-unique
factorization to be dealt with in this thesis.

Definition 1.2.1. A monoid H is called a BF-monoid (or equivalently a monoid with
bounded factorizations) if H is atomic and L(a) is finite for every a ∈ H.

Definition 1.2.2. Let H be an atomic monoid. For a ∈ H, we set

ρ(a) = sup L(a)
min L(a) and call ρ(H) = sup{ρ(a) | a ∈ H} the elasticity of H.

Note that H is half-factorial if and only if ρ(H) = 1.

Definition 1.2.3. Let H be an atomic monoid and z, z′ ∈ Z(H) be two factorizations.
Then we call

d(z, z′) = max
{∣∣∣∣ z

gcd(z, z′)

∣∣∣∣ , ∣∣∣∣ z′

gcd(z, z′)

∣∣∣∣} the distance between z and z′.

Definition 1.2.4. Let H be an atomic monoid.

1. For a ∈ H, the catenary degree c(a) denotes the smallest N ∈ N0 ∪ {∞} with the
following property:
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1.2. PRELIMINARIES

For any two factorizations z, z′ ∈ Z(a), there exists a finite sequence of factor-
izations (z0, z1, . . . , zk) in Z(a) such that z0 = z, zk = z′, and d(zi−1, zi) ≤ N
for all i ∈ [1, k].

If this is the case, we say that z and z′ can be concatenated by an N -chain.
Also, c(H) = sup{c(a) | a ∈ H} is called the catenary degree of H.

2. For a ∈ H, the monotone catenary degree cmon(a) denotes the smallest N ∈
N0 ∪ {∞} with the following property:

For any two factorizations z, z′ ∈ Z(a) with |z| ≤ |z′|, there exists a finite
sequence of factorizations (z0, z1, . . . , zk) in Z(a) such that z0 = z, zk = z′,
d(zi−1, zi) ≤ N and |zi−1| ≤ |zi| for all i ∈ [1, k].

If this is the case, we say that z and z′ can be concatenated by a monotone N -chain.
Also, cmon(H) = sup{cmon(a) | a ∈ H} is called the monotone catenary degree of
H.

Definition 1.2.5. Let H be an atomic monoid. For a ∈ H and x ∈ Z(H), let t(a, x)
denote the smallest N ∈ N0 ∪ {∞} with the following property:

If Z(a) ∩ xZ(H) 6= ∅ and z ∈ Z(a), then there exists some z′ ∈ Z(a) ∩ xZ(H) such
that d(z, z′) ≤ N .

For subsets H ′ ⊂ H and X ⊂ Z(H), we define

t(H ′, X) = sup{t(a, x) | a ∈ H ′, x ∈ X},

and we define t(H) = t(H,A(Hred)). This is called the tame degree of H.

Definition 1.2.6. A monoid homomorphism θ : H → B is called a transfer homomor-
phism if it has the following properties:

(T1) B = θ(H)B× and θ−1(B×) = H×.
(T2) If a ∈ H, r, s ∈ B and θ(a) = rs, then there exist b, c ∈ H such that θ(b) ∼ r,

θ(c) ∼ s, and a = bc.

Definition 1.2.7. Let θ : H → B be a transfer homomorphism of atomic monoids
and θ̄ : Z(H) → Z(B) the unique homomorphism satisfying θ̄(uH×) = θ(u)B× for all
u ∈ A(H). We call θ̄ the extension of θ to the factorization monoids.
For a ∈ H, the catenary degree in the fibers c(a, θ) denotes the smallest N ∈ N0 ∪ {∞}
with the following property:

For any two factorizations z, z′ ∈ Z(a) with θ̄(z) = θ̄(z′) there exists a finite
sequence of factorizations (z0, z1, . . . , zk) in Z(a) such that z0 = z, zk = z′, θ̄(zi) =
θ̄(z), and d(zi−1, zi) ≤ N for all i ∈ [1, k]; that is, z and z′ can be concatenated by
an N -chain in the fiber Z(a) ∩ θ̄−1((θ̄(z))).

Also, c(H, θ) = sup{c(a, θ) | a ∈ H} is called the catenary degree in the fibers of H.

Definition 1.2.8. Let ∅ 6= L ⊂ N0 be a non-empty subset and H an atomic monoid.

1. A positive integer d ∈ N is called a distance of L if there exists some l ∈ L such
that L ∩ [l, l + d] = {l, l + d}. We denote by 4(L) the set of distances of L. Note
that 4(L) = ∅ if and only if #L ≤ 1.
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2. We call
4(H) =

⋃
a∈H
4(L(a)) ⊂ N

the set of distances of H and min4(H) the minimum distance of H.
3. Let a ∈ H and k, l ∈ N with k < l. We call k and l adjacent or, equivalently,

adjacent lengths of a if [k, l] ∩ L(a) = {k, l}.

In the next lemma we briefly recall some well known results.

Lemma 1.2.9. Let H be an atomic monoid. Then

1. H is factorial if and only if c(H) = 0 if and only if t(H) = 0.
2. If c(H) ≤ 2, then H is half-factorial, i.e. ρ(H) = 1.
3. If H is not factorial, then 2 + sup4(H) ≤ c(H).
4. If c(H) = 3, then 4(H) = {1}.
5. t(H) ≥ c(H).

Proof.

1. Follows by [14, Theorem 1.6.3.1] and [14, Theorem 1.6.6.1].
2. Follows by [14, Theorem 1.6.3.3].
3. Follows by [14, Theorem 1.6.3.2].
4. Follows by [14, Theorem 1.6.3.4].
5. Follows by [14, Theorem 1.6.6.2]. �

Definition 1.2.10. Let H be an atomic monoid and m ∈ N. If H 6= H×, we call the
set

Vm(H) =
⋃

L∈L(H),m∈L
L the union of sets of lengths of H,

and if H = H×, we set Vm(H) = {m}.

For an integral domain R, we set R• = R \ {0} for the commutative, cancellative
monoid of non-zero elements of R. Additionally, all notions, which were introduced for
monoids, are used for domains, too; for example, we write A(R) instead of A(R•) for the
set of atoms.

Definition 1.2.11. Let R be an integral domain and K = q(R) the quotient field of R.

1. We call spec(R) the set of all prime ideals of R.
2. We set

X(R) = {p ∈ spec(R) | p 6= 0 and p is minimal}

for the set of minimal prime ideals of R.
3. Let L ⊃ K be a field extension. We call b ∈ L integral over R if there is a monic

polynomial f ∈ R[X] such that f(b) = 0.
4. For non-empty subsets X, Y ⊂ K, we define

(Y : X) = (Y :K X) = {a ∈ K | aX ⊂ Y } and X−1 = (R : X).

We denote by I(R) the set of all ideals of R and we call an ideal a ∈ I(R) invertible
if aa−1 = R. Then we denote by I∗(R) the set of all invertible ideals of R.
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5. We call

clL(R) = {b ∈ L | b is integral over R} the integral closure of R in L

and we set R̄ = clK(R) for the integral closure of an integral domain (in its quotient
field).

Definition 1.2.12. A one-dimensional noetherian domain R is called locally half-
factorial if I∗(R) is half-factorial.
Note that this notion of being locally half-factorial does not coincide with the one defined
in [2] but it coincides with what is called purely locally half-factorial there.
By [14, Theorem 3.7.1], we have I∗(R) ∼=

∐
p∈X(R)(R•p)red. Thus I∗(R) is half-factorial if

and only if (R•p)red is half-factorial for all p ∈ X(R).

We briefly fix the notation concerning sequences over finite abelian groups. Let G be
an additively written finite abelian group. For a subset A ⊂ G and an element g ∈ G, we
set −A = {−a | a ∈ A} and A− g = {a− g | a ∈ A}. Let F(G) be the free abelian monoid
with basis G. The elements of F(G) are called sequences over G. If a sequence S ∈ F(G)
is written in the form S = g1 · . . . · gl, we tacitly assume that l ∈ N0 and g1, . . . , gl ∈ G. For
a sequence S = g1 · . . . · gl, we call

|S| = l the length of S,
σ(S) =

∑l
i=1 gi ∈ G the sum of S,

supp(S) = {g1, . . . , gl} ⊂ G the support of S,
Σ(S) = {

∑
i∈I gi | ∅ 6= I ⊂ [1, l]} ⊂ G the set of subsums of S, and

−Σ(S) = {
∑
i∈I(−gi) | ∅ 6= I ⊂ [1, l]} = {−g | g ∈ Σ(S)} ⊂ G the set of negative

subsums of S.

The sequence S is called

• a zero-sum sequence if σ(S) = 0,
• zero-sum free if there is no non-trivial zero-sum subsequence, i.e. 0 /∈ Σ(S), and
• a minimal zero-sum sequence if 1 6= S, σ(S) = 0, and every subsequence S′ | S

with 1 ≤ |S′| < |S| is zero-sum free.

For a subset G0 ⊂ G, we set

B(G0) = {S ∈ F(G0) | σ(S) = 0} for the block monoid over G0 and
A(G0) = {S ∈ F(G0) | S minimal zero-sum sequence} ⊂ B(G0).

Then, in fact, B(G0) is an atomic monoid and A(G0) = A(B(G0)) is its set of atoms.

Definition 1.2.13. For a subset of a finite (additive) abelian group G0 ⊂ G, the
Davenport constant D(G0) ∈ N is defined to be the supremum of all lengths of sequences
in A(G0).

Definition 1.2.14. Let H ⊂ D be monoids.

1. We call H ⊂ D saturated or, equivalently, a saturated submonoid if, for all a, b ∈ H,
a | b in D already implies that a | b in H.

2. If H ⊂ D is a saturated submonoid, then we set D/H = {aq(H) | a ∈ D} and
[a]D/H = aq(H) and we call q(D)/q(H) = q(D/H) the class group of H in D.
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Definition 1.2.15. Let G be an additive abelian group, G0 ⊂ G a subset, T a monoid,
ι : T → G a homomorphism, and σ : F(G0) → G the unique homomorphism such that
σ(g) = g for all g ∈ G0. Then we call

B(G0, T, ι) = {St ∈ F(G0)× T | σ(S) + ι(t) = 0}

the T -block monoid over G0 defined by ι.
If T = {1}, then B(G0, T, ι) = B(G0) is the block monoid of all zero-sum sequences over
G0.

Lemma 1.2.16. Let D be an atomic monoid, P ⊂ D a set of prime elements, and
T ⊂ D an atomic submonoid such that D = F(P )× T . Let H ⊂ D be a saturated atomic
submonoid, let G = q(D/H) be its class group, let ι : T → G be a homomorphism defined
by ι(t) = [t]D/H , and suppose each class in G contains some prime element from P . Then

1. The map β : H → B(G,T, ι), given by β(pt) = [p]D/H + ι(t) = [p]D/H + [t]D/H
is a transfer homomorphism onto the T -block monoid over G defined by ι and
c(H,β) ≤ 2

2. The following inequalities hold:

c(B(G,T, ι)) ≤ c(H) ≤ max{c(B(G,T, ι)), c(H,β)},

cmon(B(G,T, ι)) ≤ cmon(H) ≤ max{cmon(B(G,T, ι)), c(H,β)}, and

t(B(G,T, ι)) ≤ t(H) ≤ t(B(G,T, ι)) + D(G) + 1.

In particular, the equality c(H) = c(B(G,T, ι)) holds if c(B(G,T, ι)) ≥ 2 and the
equality cmon(H) = cmon(B(G,T, ι)) holds if cmon(B(G,T, ι)) ≥ 2.

3. L(H) = L(B(G,T, ι)), 4(H) = 4(B(G,T, ι)), min4(H) = min4(B(G,T, ι)),
and ρ(H) = ρ(B(G, t, ι)).

4. We set B = {S ∈ B(G,T, ι) | 0 - S}. Then B and B(G,T, ι) have the same
arithmetical properties, and

c(B) ≤ c(H) ≤ max{c(B), c(H,β)},

cmon(B) ≤ cmon(H) ≤ max{cmon(B), c(H,β)}, and

t(B) ≤ t(H) ≤ t(B) + D(G) + 1.

In particular, the equality c(H) = c(B) holds if c(B) ≥ 2 and the equality cmon(H) =
cmon(B) holds if cmon(B) ≥ 2.
Additionally, L(H) = L(B), 4(H) = 4(B), min4(H) = min4(B), and ρ(H) =
ρ(B).

Proof.
1. Follows by [14, Proposition 3.2.3.3 and Proposition 3.4.8.2].
2. The assertion on the catenary degree follows by [14, Theorem 3.2.5.5], the assertion

on the monotone catenary degree by [14, Lemma 3.2.6], and the assertion on the
tame degree by [14, Theorem 3.2.5.1].

3. Follows by [14, Proposition 3.2.3.5].
4. Since 0 ∈ B(G,T, ι) is a prime element, it defines a partition B(G,T, ι) = [0]× B

with B = {S ∈ B(G,T, ι) | 0 - S{. Thus all studied arithmetical invariants coincide
for B and B(G,T, ι). Now the assertions follow from part 2 and part 3. �
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Lemma 1.2.17. Let D be an atomic monoid, P ⊂ D a set of prime elements, and
T ⊂ D an atomic submonoid such that D = F(P )× T . Let H ⊂ D be a saturated atomic
submonoid, G = q(D/H) its class group, and suppose each class in G contain some p ∈ P .

1. If #G ≥ 3, then min4(H) = 1, ρ(H) > 1, c(H) ≥ 3.
2. ρ(H) ≤ D(G)ρ(T ).

Proof. We define a homomorphism ι : T → G by ι(t) = [t]D/H and write B(G,T, ι)
for the T -block monoid over G defined by ι.

1. Then B(G) ⊂ B(G,T, ι) is a divisor-closed submonoid. By [14, Theorem 6.7.1.2],
we have min4(G) = 1, and thus min4(B(G,T, ι)) = 1 and c(B(G,T, ι)) ≥ 3 by
Lemma 1.2.9.3. Now the assertions follow by Lemma 1.2.16.2 and Lemma 1.2.16.3.

2. By [14, Proposition 3.4.7.5], we have ρ(B(G,T, ι)) ≤ D(G)ρ(T ). Now the assertion
follows again by Lemma 1.2.16.2. �

Lemma 1.2.18. Let D = D1 × . . .×Dr with r ∈ N be the product of atomic monoids
D1, . . . , Dr.
Then

1. If min4(D1) = 1, then min4(D) = 1.
2. If Vm(D1) = [2,∞) for m ∈ N≥2, then Vm(D) = [2,∞).
3. c(D) = sup{c(D1), . . . , c(Dr)}.
4. ρ(D) = sup{ρ(D1), . . . , ρ(Dr)}.
5. 4(D1) ∪ . . . ∪4(Dr) ⊂ 4(D).
6. t(D) = sup{t(D1), . . . , t(Dr)}.

Proof. For i ∈ [1, r] we have L(Di) ⊂ L(D), which implies 1, 2, and 5.
3. Follows from [14, Proposition 1.6.8.2].
4. Follows from [14, Proposition 1.4.5.2].
6. Follows from [14, Proposition 1.6.8.4]. �
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2.1. ON THE CATENARY AND THE TAME DEGREE AND THE MONOID OF RELATIONS

CHAPTER 2

A characterization of arithmetical invariants by monoids of
relations

Since all arithmetical invariants studied in this chapter coincide for a monoid and the
associated reduced monoid, we formulate our results only for reduced monoids for the sake
of readability.

2.1. On the catenary and the tame degree and the monoid of relations

This section mainly presents all the results from [22] with some slight changes in
notation in order to be able to formulate some additional results in the next sections easier.

2.1.1. µ(H).

Definition 2.1.1 (R-relation, cf. [19, end of page 3]). Let H be a reduced atomic
monoid. Two elements z, z′ ∈ Z(H) are R-related if

• either z = z′ = 1
• or there exists a finite sequence of factorizations (z0, z1, . . . , zk) such that z0 =
z, zk = z′, πH(z) = πH(zi), and gcd(zi−1, zi) 6= 1 for all i ∈ [1, k].

We call this sequence an R-chain concatenating z and z′, and if, additionally, |zi−1| ≤
|zi| for all i ∈ [1, k], then we call this sequence a monotone R-chain concatenating z and
z′. If two elements z, z′ ∈ Z(H) are R-related, we write z ≈ z′.

Since in our general setting the number of factorizations of an element a ∈ H is not
necessarily finite, the number of different R-equivalence classes of Z(a) is potentially infinite
too.

Definition 2.1.2 (µ(a), µ(H), cf. [19, first paragraph, page 4]). Let H be a reduced
atomic monoid. For a ∈ H, let Ra denote the set of R-equivalence classes of Z(a) and, for
ρ ∈ Ra, let |ρ| = min{|z| | z ∈ ρ}. For a ∈ H, we set

µ(a) = sup{|ρ| | ρ ∈ Ra} ≤ sup L(a)

and define

µ(H) = sup{µ(a) | a ∈ H, |Ra| > 1}.

Then µ(H) = 0 if and only if |Ra| = 1 for all a ∈ H.
The following Proposition 2.1.3 is partly based on the second part of the proof of [6,

Theorem 3.1] and realizes its result in our slightly more general setup.

Proposition 2.1.3. Let H be a reduced atomic monoid. Then

c(a) ≥ µ(a) for all a ∈ H, and c(H) = µ(H).
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2.1. ON THE CATENARY AND THE TAME DEGREE AND THE MONOID OF RELATIONS

Proof. First we prove

c(a) ≥ µ(a) for all a ∈ H.

Let a ∈ H be such that |Ra| > 1. We may assume that c(a) < ∞. Let N ∈ N0 be such
that µ(a) ≥ N . Let ρ ∈ Ra be such that |ρ| ≥ N and z ∈ ρ such that |z| = |ρ|. Let
z′ ∈ Z(a) be such that z 6≈ z′ and let z = z0, z1, . . . , zk = z′ be a c(a)-chain concatenating
z and z′. Let i ∈ [1, k] be minimal such that z 6≈ zi. Then zi−1 6≈ zi, and therefore

N ≤ |z0| ≤ |zi−1| ≤ d(zi, zi−1) ≤ c(a).

Till now we have c(H) ≥ µ(H). Thus it suffices to show

µ(H) ≥ c(H).

We show that, for all N ∈ N0, all a ∈ H, and all factorizations z, z′ ∈ Z(a) with |z| ≤ N
and |z′| ≤ N , there is a µ(H)-chain from z to z′. We proceed by induction on N . If N = 0,
then z = z′ = 1 and d(z, z′) = 0 ≤ µ(H). Suppose N ≥ 1 and that, for all a ∈ H and all
z, z′ ∈ Z(a) with |z| < N and |z′| < N , there is a µ(H)-chain from z to z′. Now let a ∈ H
and let z, z′ ∈ Z(a) with |z| ≤ N and |z′| ≤ N . If z 6≈ z′, then there are z′′, z′′′ ∈ Z(a)
such that z′′ ≈ z, z′′′ ≈ z′, and z′′ and z′′′ are minimal in their R-classes with respect to
their lengths. Since gcd(z′′, z′′′) = 1, we find d(z′′, z′′′) = max{|z′′|, |z′′′|} ≤ µ(a) ≤ µ(H).
Now it remains to show that, for any two factorizations z, z′ ∈ Z(a) with z ≈ z′, |z| ≤ N ,
and |z′| ≤ N , there is a µ(H)-chain concatenating them. By definition, there is an R-chain
z0, . . . , zk with z = z0, z′ = zk, and gi = gcd(zi−1, zi) 6= 1 for all i ∈ [1, k]. By the induction
hypothesis, there is a µ(H)-chain from g−1

i zi−1 to g−1
i zi for all i ∈ [1, k], and thus there is

a µ(H)-chain from zi to zi−1 for i ∈ [1, k]; thus there is a µ(H)-chain from z to z′. �

2.1.2. The monoid of relations ∼H .

Definition 2.1.4. Let H be a reduced atomic monoid. We call

∼H= {(x, y) ∈ Z(H)× Z(H) | πH(x) = πH(y)}

the monoid of relations.

Lemma 2.1.5. Let H be a reduced atomic monoid, P ⊂ H the set of prime elements of
H, and T = A(H) \ P.

1. Then ∼H= {(qx, qy) | q ∈ F(P), x, y ∈ F(T )} and, for all q ∈ F(P) and
x, y ∈ Z(H), we have (qx, qy) ∈∼H if and only if (x, y) ∈∼H .

2. The homomorphism ϕ :∼H→ F(P)×F(T )×F(T ) defined by ϕ(qx, qy) = (q, x, y)
with z ∈ F(P), where x, y ∈ F(T ), is a divisor theory.

3. ∼H is a Krull monoid with class group q([T ]), and the set of all classes containing
primes is given by {v, v−1 | v ∈ T}∪{1} if P 6= ∅ and by {v, v−1 | v ∈ T} otherwise.
In particular, the set of classes containing primes is finite if and only if T is finite.

Proof.

1. Obviously, we have Z(H) = F(P) × F(T ). Let (qx, q′y) ∈ Z(H) × Z(H) with
q, q′ ∈ F(P) and x, y ∈ F(T ). Then (qx, q′y) ∈∼H if and only if πH(qx) = πH(q′y).
Since q, q′ are products of prime elements, we find q = q′, and thus πH(x) = πH(y).

— 11 —



2.1. ON THE CATENARY AND THE TAME DEGREE AND THE MONOID OF RELATIONS

2. First we show that ϕ is a divisor homomorphism. Let (q1x1, q1y1), (q2x2, q2y2) ∈∼H
be such that ϕ(q1x1, q1y1) = (q1, x1, y1) | (q2, x2, y2) = ϕ(q2x2, q2y2) in F(P) ×
F(T ) × F(T ). Then there exists (q, x, y) ∈ F(P) × F(T ) × F(T ) such that
(q1, x1, y1)(q, x, y) = (q2, x2, y2). Now we apply πH and find

πH(y1)πH(x) = πH(x1)πH(x) = πH(x1x)

= πH(x2) = πH(y2) = πH(y1y) = πH(y1)πH(y).

Thus πH(x) = πH(y), and therefore (qx, qy) ∈∼H and (q1x1, q1y1) |∼H (q2x2, q2y2).
Now we prove that ϕ is a divisor theory. Since F(P)×F(T )×F(T ) = F(U) with
U = {(p, 1, 1) | p ∈ P} ∪ {(1, t, 1), (1, 1, t) | t ∈ T}, we must show that any element
of U is the greatest common divisor of the image of a finite subset of ∼H . Let
(p, 1, 1) ∈ U . Since ϕ(p, p) = (p, 1, 1), there is nothing to show in this case. Now
let u ∈ A(H) be not prime such that (1, u, 1) ∈ U . Since u ∈ A(H) is not prime,
there are a, b ∈ H \H× not divisible by any prime such that u | ab but u - a and
u - b. Now let z ∈ Z(u−1ab), x ∈ Z(a), and y ∈ Z(b) with u - xy. Then we find
(1, u, 1) = gcd(ϕ(zu, xy), ϕ(u, u)).

3. It is clear by part 2 and [14, Theorem 2.4.8.1] that ∼H is a Krull monoid. Now we
compute its class group. We define the map

φ :
{
F(P)×F(T )×F(T ) → q([T ])

(q, x, y) 7→ πH(x)(πH(y))−1.

Obviously, φ is a well-defined monoid homomorphism and φ is surjective.
By [14, Proposition 2.5.1.4], it is sufficient to show that φ−1(1) = ϕ(∼H) in
order to prove that the class group of ∼H equals q([T ]). Now let (q, x, y) ∈
F(P)×F(T )×F(T ). Then we find

φ(q, x, y) = πH(x)πH(y)−1 = 1 ⇔

πH(x) = πH(y) ⇔

(x, y) ∈∼H ⇔

(qx, qy) ∈∼H ,

and we are done. For the last part of the proof, we calculate the set of all classes
containing prime elements of F(P) × F(T ) × F(T ). We have F(P) × F(T ) ×
F(T ) = F(U) with U = {(p, 1, 1) | p ∈ P} ∪ {(1, t, 1), (1, 1, t) | t ∈ T} and find
{v, v−1 | v ∈ T} ∪ {1} if P 6= ∅ and {v, v−1 | v ∈ T} otherwise. �

As we have seen in the proof of Lemma 2.1.5.2 every element of Z(H)× Z(H) can be
written as greatest common divisor of the image of at most two elements from ∼H . In the
literature, such a Krull monoid is called a δ1-semigroup with divisor theory; for reference,
see [27] and [28].

Definition 2.1.6. Let H be a reduced atomic monoid. For a ∈ H, we define

Aa(∼H) = {(x, y) ∈ A(∼H) | πH(x) = a}.

Lemma 2.1.7. Let H be a reduced atomic monoid and a ∈ H. Then

1. A(∼H) ⊂ {(u, u) | u ∈ A(H)} ∪ {(x, y) ∈∼H | gcd(x, y) = 1}.
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2. If x, y ∈ Z(a) with x 6≈ y, then (x, y) ∈ Aa(∼H).

Proof.

1. Let (x, y) ∈ A(∼H) and z = gcd(x, y). If z = 1, we are done. Now assume
z 6= 1. Then z = u1 · . . . · uk for some k ∈ N and u1, . . . , uk ∈ A(H). Now we
find (x, y) = (z, z)(xz−1, yz−1) = (u1, u1) · . . . · (uk, uk)(xz−1, yz−1). If k ≥ 2,
then (x, y) /∈ A(∼H), a contradiction. If k = 1, then (x, y) ∈ A(∼H) implies
(xz−1, yz−1) = (1, 1), that is, x = z = y = u1 ∈ A(H).

2. Let a ∈ H and x, y ∈ Z(a) such that (x, y) /∈ Aa(∼H). Then, trivially, (x, y) /∈
A(∼H) and thus there are (x1, y1), . . . , (xk, yk) ∈ A(∼H) with k ≥ 2 such that
(x, y) = (x1, y1) · . . . · (xk, yk). Then x = x1 · . . . · xk, y1x2 · . . . · xk, y1 · . . . · yk = y

is an R-chain concatenating x and y, and therefore x ≈ y. �

Definition 2.1.8. Let H be a reduced atomic monoid and ∼H its monoid of relations.
For (x, y) ∈∼H and X ⊂∼H , we set

4̃(x, y) =
∣∣|x| − |y|∣∣ and 4̃(X) = {4̃(x, y) | (x, y) ∈ X, |x| 6= |y|}.

Now we can prove something like [6, Proposition 3.2] for the catenary degree and like
in [25] for the elasticity, and an additional result for the set of distances.

Proposition 2.1.9. Let H be a reduced atomic monoid. Then

1. c(H) ≤ sup{|y| | (x, y) ∈ A(∼H)};
2. ρ(H) = sup

{
|x|
|y|

∣∣∣ (x, y) ∈∼H
}

= sup
{
|x|
|y|

∣∣∣ (x, y) ∈ A(∼H)
}

; and
3. 4(H) ⊂ 4̃(∼H), min4(H) = gcd 4̃(A(∼H)) = min 4̃(∼H), and max4(H) ≤

max 4̃(A(∼H)).

Proof.

1. Let a ∈ H \ H× and let z, z′ ∈ Z(a) be two different factorizations of a. Then,
of course, (z, z′) ∈∼H . Thus there are (x1, y1), . . . , (xk, yk) ∈ A(∼H) such that
(z, z′) = (x1, y1) · . . . · (xk, yk). Now we can construct the following chain of
factorizations: z = z0 and zi = zi−1x

−1
i yi for i ∈ [1, k]. Then zk = z′. Since

(xi, yi) ∈ A(∼H), we find gcd(xi, yi) = 1 or xi = yi = u with u ∈ A(H) ⊂ Z(H) by
Lemma 2.1.7.1. This implies that either d(zi−1, zi) = max{|xi|, |yi|} or d(zi−1, zi) =
0. Thus z and z′ can be concatenated by a max{|xi|, |yi| | i ∈ [1, k]}-chain. Since
(x, y) ∈ A(∼H) if and only if (y, x) ∈ A(∼H), the assertion follows.

2. For all a ∈ H, we have that Z(a)× Z(a) ⊂∼H . Thus we find

ρ(a) = sup L(a)
min L(a) = sup

{ |x|
|y|

∣∣∣∣x, y ∈ Z(a)
}

= sup
{ |x|
|y|

∣∣∣∣ (x, y) ∈ Z(a)× Z(a)∩ ∼H
}
.

The first equality now follows. Since A(∼H) ⊂∼H is a subset, it is clear that

sup
{ |x|
|y|

∣∣∣∣ (x, y) ∈ A(∼H)
}
≤ sup

{ |x|
|y|

∣∣∣∣ (x, y) ∈∼H
}
.

In order to prove equality, we show the following assertion:
For all (x, y) ∈∼H , there is (x′, y′) ∈ A(∼H) such that |x

′|
|y′| ≥

|x|
|y| .

Let (x, y) ∈∼H and without loss of generality assume |x| ≥ |y|. Now there is some
n ∈ N and (xi, yi) ∈ A(∼H) for all i ∈ [1, n] such that (x, y) = (x1, y1) · . . . · (xn, yn).
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When we pass to the lengths, we find |x| =
∑n
i=1 |xi| and |y| =

∑n
i=1 |yi|. This

yields

|x|
|y|
· |y| = |x| =

n∑
i=1
|xi| =

n∑
i=1

|xi|
|yi|
|yi| ≤

nmax
i=1

|xi|
|yi|

n∑
i=1
|yi| =

nmax
i=1

|xi|
|yi|
· |y|.

Thus we find
|x|
|y|
≤ nmax

i=1

|xi|
|yi|

.

3. Since, for each d ∈ 4(H), there exists (x, y) ∈ Z(H) such that |y| − |x| = d, the
inclusion 4(H) ⊂ 4̃(∼H) is obvious, and therefore min4(H) ≥ min 4̃(∼H).
Now let d′ ∈ 4̃(∼H). Then there is (x, y) ∈∼H such that d′ = ||x| − |y|| by
Definition 2.1.8. We may assume |x| < |y|. There is some x′ ∈ Z(πH(x)) such that
|x′| ∈ (|x|, |y|] and |x| and |x′| are adjacent lengths of πH(x). Then d = |x′| − |x| ≤
|y| − |x| = d′, and therefore min4(H) ≤ min (̃ ∼H) and equality follows.
Now let d = max4(H). Then there exists (x, y) ∈∼H and a ∈ H such that
πH(x) = a, |x| − |y| = d and [|y|, |x|] ∩ L(a) = {|y|, |x|}. There are k ∈ N and
(x1, y1), . . . , (xk, yk) ∈ A(∼H) such that (x, y) = (x1, y1) · . . . · (xk, yk). Since∑k

i=1 |xi| = |x| > |y| =
∑k
i=1 |yi|, there exists j ∈ [1, k] such that |xj | > |yj |.

Now we show |xj | − |yj | ≥ d. We assume to the contrary |xj | − |yj | < d. We
set z = yj

∏k
i=1,i6=j xi. Clearly, z ∈ Z(a) and |z| = |x| − (|xj | − |yj |) ∈ [|x| − (d −

1), |x| − 1] ∩ L(a), a contradiction.
Let now d′ = gcd 4̃(A(∼H)) and d = min (̃ ∼H). Since d′ | d, it remains to prove
that d′ ∈ 4̃(∼H). Let k ∈ N, (x1, y1), . . . , (xk, yk) ∈ A(∼H), and n1, . . . , nk ∈ Z
be such that

d′ =
k∑
i=1

ni ||xi| − |yi|| .

Replacing (xi, yi) by (yi, xi) if necessary, we may assume that nii ||xi| − |yi|| =
|ni|(|xi| − |yi|) for all i ∈ [1, k], and we obtain

4̃
(

k∏
i=1

(xi, yi)|ni|
)

= 4̃
(

k∏
i=1

x
|ni|
i ,

k∏
i=1

y
|ni|
i

)
=
∣∣∣∣∣
∣∣∣∣ k∏
i=1

x
|ni|
i

∣∣∣∣− ∣∣∣∣ k∏
i=1

y
|ni|
i

∣∣∣∣
∣∣∣∣∣

=
∣∣∣∣ k∏
i=1
|ni||xi| −

∣∣∣∣ k∏
i=1
|ni||yi|

∣∣∣∣ =
∣∣∣∣ k∑
i=1
|ni|(|xi| − |yi|)

∣∣∣∣ = d′ ∈ 4̃(∼H). �

Next, we mimic the ideas from [6, page 259 and Theorem 3.2].

Definition 2.1.10. For a reduced atomic monoid H, we set

ν(H) = sup{µ(a) | a ∈ H, Aa(∼H) 6= ∅, |Ra| > 1}.

Proposition 2.1.11. Let H be a reduced atomic monoid. Then

c(H) = ν(H).

Proof. By Proposition 2.1.3, it is sufficient to show that µ(H) = ν(H). When we
compare the definitions of those two invariants, we see that the only thing we really have
to show is that

{a ∈ H | Aa(∼H) 6= ∅, |Ra| > 1} = {a ∈ H | |Ra| > 1}.
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One inclusion is trivial and, for the other one, let a ∈ H be such that |Ra| > 1, and let
z, z′ ∈ Z(a) be two factorizations of a such that z 6≈ z′ and such that both are minimal
in their R-equivalence classes with respect to their lengths. By Lemma 2.1.7.2, we find
(z, z′) ∈ Aa(∼H) 6= ∅. �

Let H be a finitely generated reduced monoid. The following identity will prove crucial
for the computations of the catenary degree in Section 2.3.

(2.1.1) c(H) = max{µ(a) | a ∈ H, Aa(∼H) 6= ∅, |Ra| > 1}.

Theorem 2.1.12. Let H be a reduced atomic monoid. Then
1. c(H) = sup{c(a) | a ∈ H, Aa(∼H) 6= ∅}.
2. c(H) ≤ sup{|x| | (x, y) ∈ A(∼H), x 6≈ y}.

Proof.
1. Obviously, we have c(H) ≥ sup{c(a) | a ∈ H,Aa(∼H) 6= ∅}. Since, by Proposi-

tion 2.1.3, c(a) ≥ µ(a) for all a ∈ H, we find by Proposition 2.1.11, that

sup{c(a) | a ∈ H,Aa(∼H) 6= ∅} ≥ sup{µ(a) | a ∈ H,Aa(∼H) 6= ∅}

≥ sup{µ(a) | a ∈ H,Aa(∼H) 6= ∅, |Ra| > 1}

= ν(H) = c(H).

2. We use Proposition 2.1.11 and find

c(H) = ν(H)

≤ sup{µ(a) | a ∈ H, |Ra| > 1}

≤ sup{|x| | (x, y) ∈ A(∼H), x 6≈ y}. �

Definition 2.1.13. Let H be a reduced atomic monoid. For subsets X, Y ⊂ Z(H), we
set

d(X,Y ) =

min{d(x, y) | x ∈ X, y ∈ Y } if X,Y 6= ∅,

0 else
for the distance between X and Y . If X = {x}, we write d({x}, Y ) = d(x, Y ).

Theorem 2.1.14. Let H be a reduced atomic monoid and u ∈ A(H).
1. t(H,u) = sup{d(x,Z(a) ∩ uZ(H)) | a ∈ uH, x ∈ Z(a), Aa(∼H) 6= ∅}.
2. t(H) = sup{d(x,Z(a) ∩ uZ(H)) | a ∈ uH, x ∈ Z(a), Aa(∼H) 6= ∅, u ∈ A(H)}.
3. t(H) ≤ sup{|x| | (x, y) ∈ A(∼H)}.

Proof.
1. Let t = t(H,u) and d = sup{d(x,Z(a) ∩ uZ(H)) | a ∈ uH, x ∈ Z(a), Aa(∼H) 6= ∅}.

We first prove that t ≤ d. Assume a ∈ uH. Now we must show that, for all
z ∈ Z(a), there exists z′ ∈ Z(a) ∩ uZ(H) such that d(z, z′) ≤ d. Let z ∈ Z(a).
If u | z, then we are done by setting z′ = z, since then d(z, z′) = 0 ≤ d. Now
assume that u - z. As a ∈ uH, we have u−1a ∈ H, and therefore there is some
z ∈ Z(u−1a). Then uz ∈ Z(a) and u | uz. Since (z, uz) ∈∼H , there exist n ∈ N
and (x1, y1), . . . , (xn, yn) ∈ A(∼H) such that (z, uz) = (x1, y1) · . . . · (xn, yn). This
implies that (xi, yi) | (z, uz) in ∼H for all i ∈ [1, n] and that there exists some
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j ∈ [1, n] such that u | yj . Observe that xj | z implies that u - xj . Then (xj , yj) ∈
AπH(xj)(∼H), πH(xj) = πH(yj) ∈ uH, and yj ∈ Z(πH(xj)) ∩ uZ(H). Now take
y′ ∈ Z(πH(xj)) ∩ uZ(H) such that d(xj , y′) = d(xj ,Z(πH(xj)) ∩ uZ(H)). If we now
choose z′ = y′zx−1

j , then z′ ∈ Z(a) ∩ uZ(H), and d(z, z′) = d(xj(zx−1
j ), y′zx−1

j ) =
d(xj , y′) ≤ d. This proves t ≤ d.
Proof of t ≥ d. Let N ∈ N0 be such that N ≤ d. Then there exist a ∈ uH,
x ∈ Z(a) such that Aa(∼H) 6= ∅, and y ∈ Z(a) ∩ uZ(H) such that d(x, y) =
d(x,Z(a) ∩ uZ(H)) ≥ N . Let x ∈ Z(a) ∩ uZ(H) be such that d(x, z) ≤ t. Then
N ≤ d(x, y) ≤ d(x, z) ≤ t. Hence d ≤ t.

2. Obvious by part 1 and the very definition of the tame degree.
3. Shown in [3, Proposition 5.2.2]. �

Let H be a reduced atomic monoid. Suppose we have a decomposition A(Hred) =⊎
i∈I Ai, where I is an index set and the Ai ⊂ A(Hred) for i ∈ I are non-empty subsets

such that

(2.1.2) A(∼H) ∩ (F(Ai)×F(Ai)) = {(a, a) | a ∈ Ai} for all i ∈ I.

Let a, b ∈ A(Hred) and define an equivalence relation ' on A(Hred) by a ' b if a, b ∈ Ai
for some i ∈ I. We can extend the canonical projection π' : A(Hred) → A(Hred)/ '
to a monoid epimorphism π' : Hred → H := [[ai]' | i ∈ I] (well defined by (2.1.2)) onto
a reduced, atomic monoid, where ai ∈ Ai for all i ∈ I. Of course, the possibly most
interesting special case is when I is finite, that is, H is a finitely generated, reduced, atomic
monoid.
Now we can prove the following result.

Theorem 2.1.15. Let H and H be as above. Then

c(H) ≤ c(H),

and, if additionally π' induces a homomorphism from ∼H onto ∼H , then

1. c(H) ≤ max{|x| | (x, y) ∈ A(∼H)};
in particular, if c(H) = max{|x| | (x, y) ∈ A(∼H)}, then c(H) = c(H);

2. ρ(H) = ρ(H) = max
{
|x|
|y|

∣∣∣ (x, y) ∈ A(∼H)
}

; and
3. t(H) ≤ t(H).

Proof. Since π' is defined as a map from A(Hred) onto A(H), it trivially extends to
π' : Z(H)→ Z(H) such that the following diagram commutes:

Z(H)

πH

��

π' // Z(H)

π
H

��
Hred

π' // H

Now we prove the following two statements.

A1 For all z, z′ ∈ Z(H), z ≈ z′ implies π'(z) ≈ π'(z′).
A2 For all z ∈ Z(H), |z| = |π'(z)|.
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Proof of A1. Let z, z′ ∈ Z(H) be two factorizations such that gcd(z, z′) 6= 1. We
have 1 6= π'(gcd(z, z′)) | gcd(π'(z), π'(z′)) and find gcd(π'(z), π'(z′)) 6= 1. Now the
assertion is obvious. �

Proof of A2. It is obvious that |z| = |π'(z)| for all z ∈ Z(H). �

By A1, we find µ(H) ≥ µ(H), and thus, by Proposition 2.1.3, we have c(H) = µ(H) ≤
µ(H) = c(H). Now we assume that π' induces a homomorphism from ∼H onto ∼H .

1. By A2, we find max{|x| | (x, y) ∈ A(∼H)} = max{|x| | (x, y) ∈ A(∼H)}, whence
Proposition 2.1.9 implies that c(H) ≤ max{|x| | (x, y) ∈ A(∼H)} = max{|x| |
(x, y) ∈ A(∼H)}.

2. Since H is finitely generated, ∼H is also finitely generated. Thus we have, by A2,

sup
{ |x|
|y|

∣∣∣∣ (x, y) ∈ A(∼H)
}

= sup
{ |x|
|y|

∣∣∣∣ (x, y) ∈ A(∼H)
}

= max
{ |x|
|y|

∣∣∣∣ (x, y) ∈ A(∼H)
}
.

Now everything follows by Proposition 2.1.9.2.
3. Obviously, we have d(z, z′) ≥ d(π'(z), π'(z′)) for all z, z′ ∈ Z(H). Thus we find

t(H) ≥ t(H) by Definition 1.2.5. �

2.2. The monotone catenary degree

For the description and computation of the monotone catenary degree, we follow the
same two step procedure as in [3]. In order to formulate this precisely, we need some
definitions.

Definition 2.2.1. Let H be a reduced atomic monoid.
1. For a ∈ H, the equal catenary degree ceq(a) denotes the smallest N ∈ N0 ∪ {∞}

with the following property:
For any two factorizations z, z′ ∈ Z(a) with |z| = |z′|, there exists a finite
sequence of factorizations (z0, z1, . . . , zk) in Z(a) such that z0 = z, zk = z′,
d(zi−1, zi) ≤ N , and |zi| = |z| for all i ∈ [1, k].

If this is the case, we say that z and z′ can be concatenated by an N -equal-length-
chain.
Also, ceq(H) = sup{ceq(a) | a ∈ H} is called the equal catenary degree of H.

2. For a ∈ H, we define

cad(a) = sup{d(Zk(a),Zl(a)) | k, l ∈ L(a) are adjacent}

as the adjacent catenary degree of a.
Also, cad(H) = sup{cad(a) | a ∈ H} is called the adjacent catenary degree of H.

Then we find
c(H) ≤ cmon(H) = sup{ceq(H), cad(H)}

by [3, (4.1)]. There exists an example that the tameness of a monoid does not imply the
finiteness of the equal catenary degree and therefore not the finiteness of the monotone
catenary degree; see [10, Example 4.5]. Unfortunately, there are no results about the
finiteness of the adjacent catenary degree in tame monoids. In subsection 2.2.4, we will
give a variant of the adjacent catenary degree, which can be shown to be finite in tame
monoids.
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2.2. THE MONOTONE CATENARY DEGREE

2.2.1. µeq(H) and the monoid of equal-length relations ∼H,eq.
Here we follow the same strategy as in subsection 2.1.1 for the definition of the R-relation
and the µ-invariant.

Definition 2.2.2. Let H be a reduced atomic monoid.

1. Two elements z, z′ ∈ Z(H) with |z| = |z′| are Req-related if
• either z = z′ = 1
• or there exists a finite sequence of factorizations (z0, z1, . . . , zk) such that
z0 = z, zk = z′, πH(z) = πH(zi), gcd(zi−1, zi) 6= 1, and |zi| = |z| for all
i ∈ [1, k].

We call this sequence an Req-chain concatenating z and z′. If two elements
z, z′ ∈ Z(H) are Req-related, we write z ≈eq z

′.
Obviously, z ≈eq z

′ implies |z| = |z′|.
2. For a ∈ H and k ∈ L(a), let Ra,k denote the set of Req-equivalence classes of Zk(a).

For a ∈ H, we set

µeq(a) = sup{k ∈ L(a) | |Ra,k| > 1}

and define µeq(H) = sup{µeq(a) | a ∈ H}.

Then µeq(H) = 0 if and only if |Ra,k| ≤ 1 for all a ∈ H and k ∈ L(a).

Lemma 2.2.3. Let H be a reduced atomic monoid and let x, y ∈ Z(a) with min{|x|, |y|} >
cmon(a).
Then there is a monotone R-chain concatenating x and y, thus x ≈ y; in particular, if
|x| = |y|, then x ≈eq y.

Proof. Let a ∈ H and x, y ∈ Z(a) be such that min{|x|, |y|} > cmon(a). We may
assume that |x| ≤ |y|. Then there is a monotone cmon(a)-chain concatenating x and y, say
z0 = x, z1, . . . , zk = y. Since, for all i ∈ [1, k], we have d(zi−1, zi) ≤ cmon(a) < |x| = |z0|, we
have gcd(zi−1, zi) 6= 1 for all i ∈ [1, k]. Thus z0, . . . , zk is a monotone R-chain concatenating
x and y, and therefore x ≈ y. If |x| = |y|, then z0, . . . , zk is an equal-length chain, and
therefore x ≈eq y. �

Theorem 2.2.4. Let H be a reduced atomic monoid. Then

ceq(a) ≥ µeq(a) for all a ∈ H, and ceq(H) = µeq(H).

Proof. First we prove ceq(a) ≥ µeq(a) for all a ∈ H. We may assume that ceq(a) <∞
and µeq(a) ≥ 1. Let N ∈ N be such that N ≤ µeq(a). Then there exists k ∈ L(a)
such that |Ra,k| > 1 and k ≥ N . Let z, z′ ∈ Zk(a) be such that z 6≈eq z′, and let
z = z0, z1, . . . , zn = z′ be a ceq(a)-equal-length chain concatenating z and z′. Now we
choose i ∈ [0, n− 1] minimal such that z 6≈eq zi. Then zi−1 6≈eq zi, and we find

ceq(a) ≥ d(zi−1, zi) = k ≥ N.

Now we prove µeq(H) ≥ ceq(H). We show that, for all N ∈ N0, all a ∈ H, and all
factorizations z, z′ ∈ Z(a) with |z| = |z′| ≤ N , there is a µeq(H)-equal-length-chain from z

to z′. We proceed by induction on N . If N = 0, then z = z′ = 1 and d(z, z′) = 0 ≤ µeq(H).
Suppose N ≥ 1 and that, for all a ∈ H and all z, z′ ∈ Z(a) with |z| = |z′| < N , there
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2.2. THE MONOTONE CATENARY DEGREE

is a µeq(H)-equal-length-chain from z to z′. Now let a ∈ H and let z, z′ ∈ Z(a) with
|z| = |z′| ≤ N . If z 6≈eq z

′, then µeq(H) ≥ µeq(a) ≥ |z| = d(z, z′). Now it remains to
show that, for any two factorizations z, z′ ∈ Z(a) with |z| = |z′| ≤ N and z ≈eq z

′, there
is a µeq(H)-equal-length-chain concatenating them. By definition, there is an Req-chain
z0, . . . , zk with z0 = z, z′ = zk, gi = gcd(zi−1, zi) 6= 1, and |zi| = |z| for all i ∈ [1, k]. By
induction hypothesis, there is a µeq(H)-equal-length-chain from g−1

i zi−1 to g−1
i zi for all

i ∈ [1, k], and thus there is a µeq(H)-equal-length-chain from zi−1 to zi for i ∈ [1, k]; thus
there is a µeq(H)-equal-length chain from z to z′. �

Definition 2.2.5. Let H be a reduced atomic monoid.

∼H,eq= {(x, y) ∈ Z(H)× Z(H) | π(x) = π(y) and |x| = |y|} = {(x, y) ∈∼H | |x| = |y|}

is called the monoid of equal-length relations of H.

By [3, Proposition 4.4.1], ∼H,eq⊂∼H is a saturated submonoid and hence a Krull
monoid, and, by [3, Proposition 4.4.2], ∼H,eq is finitely generated if Hred is finitely
generated.

Definition 2.2.6. Let H be a reduced atomic monoid. For a ∈ H, we set

Aa(∼H,eq) = {(x, y) ∈ A(∼H,eq) | π(x) = aH×}.

Lemma 2.2.7. Let H be a reduced atomic monoid, a ∈ H, and z, z′ ∈ Z(a) such that
z 6≈eq z

′.
Then (z, z′) ∈ Aa(∼H,eq).

Proof. Let a ∈ H and z, z′ ∈ Z(a) be such that (z, z′) /∈ Aa(∼H,eq). Then, trivially,
(z, z′) /∈ A(∼H,eq) and thus there are (x1, y1), . . . , (xk, yk) ∈ A(∼H,eq) with k ≥ 2 such that
(z, z′) = (x1, y1) · . . . · (xk, yk). Then z = x1 · . . . · xk, y1x2 · . . . · xk, y1 · . . . · yk = z′ is an
Req-chain concatenating z and z′, and therefore z ≈eq z

′. �

Theorem 2.2.8. Let H be a reduced atomic monoid. Then

ceq(H) = sup{µeq(a) | a ∈ H, Aa(∼H,eq) 6= ∅, |Ra,k| > 1 for some k ∈ L(a)}

= sup{k ∈ N | a ∈ H, Aa(∼H,eq) 6= ∅, k ∈ L(a), |Ra,k| > 1}.

Proof. By Theorem 2.2.4, we have ceq(H) = µeq(H) and, by Definition 2.2.2.2, the
second and the third equality are obvious. Thus it suffices to show that

{µeq(a) | a ∈ H, |Ra,k| > 1 for some k ∈ L(a)} =

{µeq(a) | a ∈ H, Aa(∼H,eq) 6= ∅, |Ra,k| > 1 for some k ∈ L(a)}.

The inclusion from right to left is clear. Now let a ∈ H and k ∈ L(a) be such that
|Ra,k| > 1. Then there exist z, z′ ∈ Zk(a) such that z 6≈eq z

′. By Lemma 2.2.7, we find
(z, z′) ∈ Aa(∼H,eq) 6= ∅. �
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2.2.2. µad(H) and the monoid of monotone relations ∼H,mon.
In principal, we follow again the same strategy as in subsection 2.1.1 and 2.2.1 for the
µ-invariant and the µeq-invariant. But here we cannot construct an equivalence relation
like the R-relation or the Req-relation.

Lemma 2.2.9. Let H be a reduced atomic monoid, a ∈ H, and k, l ∈ L(a).
Then

d(Zk(a),Zl(a)) = max{k, l} ⇐⇒ gcd(x, y) = 1 for all x ∈ Zk(a) and y ∈ Zl(a).

Proof. The result follows immediately by Definition 2.1.13. �

Definition 2.2.10. Let H be a reduced atomic monoid. For a ∈ H, we set

µad(a) = sup{k ∈ L(a) | d(Zk(a),Zl(a)) = k for l ∈ L(a), l < k, l adjacent to k}.

Then we set µad(H) = sup{µad(a) | a ∈ H}.

Lemma 2.2.11. Let H be a reduced atomic monoid, a ∈ H, k, l ∈ L(a) adjacent with
k < l, x ∈ Zk(a), and y ∈ Zl(a) such that there is a monotone R-chain from x to y.
Then µad(a) 6= l.

Proof. Let a ∈ H, k, l ∈ L(a) adjacent with k < l, x ∈ Zk(a), and y ∈ Zl(a) be
such that there is a monotone R-chain from x to y, say z0 = x, z1, . . . , zn = y for some
n ∈ N. Now choose i ∈ [1, n] minimal such that |zi| = l. Due to the minimality of i,
we find zi−1 ∈ Zk(a). Since gcd(zi−1, zi) 6= 1, we find d(Zk(a),Zl(a)) < l, and therefore
µad(a) 6= l. �

Theorem 2.2.12. Let H be an atomic monoid. Then

cad(a) ≥ µad(a) for all a ∈ H and cad(H) = µad(H).

Proof. First let a ∈ H. We show that cad(a) ≥ µad(a), and then will cad(H) ≥ µad(H)
follow by passing to the supremum on both sides. If µad(a) = 0 or µad(a) = ∞, this is
trivial. Now let µad(a) = k ∈ N. Then there is l ∈ L(a) and l < k with l adjacent to k.
Then, by Definition 2.2.1.2, cad(a) ≥ d(Zk(a),Zl(a)) = max{k, l} = k = µad(a).
Now we prove µad(H) ≥ cad(H). We must prove that cad(a) ≤ µad(H) for all a ∈ H.
Assume to the contrary that there is some a ∈ H such that cad(a) > µad(H). Let k ∈ N be
minimal such that there is some l < k and a ∈ H such that k and l are adjacent lengths
of a and cad(a) = d(Zk(a),Zl(a)). If d(Zk(a),Zl(a)) < k, then there are some x ∈ Zk(a)
and y ∈ Zl(a) such that g = gcd(x, y) 6= 1. If b = πH(g−1x), then k − |g| and l − |g| are
adjacent lengths of b and

cad(a) = d(Zk(a),Zl(a)) ≤ d(Zk−|g|(b),Zl−|g|(b)) ≤ cad(b),

and by the minimal choice of k we infer that cad(b) ≤ µad(H), a contradiction. �

Definition 2.2.13. Let H be an atomic monoid and ∼H the monoid of relations of H.
Then we set

∼H,mon= {(x, y) ∈∼H | |x| ≤ |y|} for the monoid of monotone relations of H.

Unfortunately, ∼H,mon⊂∼H is not saturated.
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Definition 2.2.14. Let H be a reduced atomic monoid. For a ∈ H, we set

Aa(∼H,mon) = {(x, y) ∈ A(∼H,mon) | π(x) = aH×}.

Lemma 2.2.15. Let H be a reduced atomic monoid, a ∈ H, and let k, l ∈ L(a) be
adjacent with k < l.
If d(Zk(a),Zl(a)) = l, then (x, y) ∈ Aa(∼H,mon) for all x ∈ Zk(a) and y ∈ Zl(a).

Proof. Let a ∈ H, let k, l ∈ L(a) be adjacent with k < l and d(Zk(a), d(Zl(a)) = l,
and let x ∈ Zk(a) and y ∈ Zl(a). Now suppose (x, y) /∈ Aa(∼H,mon). Then, trivially,
(x, y) /∈ A(∼H,mon) and there are (x1, y1), . . . , (xk, yk) ∈ A(∼H,mon) with k ≥ 2 and
|y1| − |x1| ≤ . . . ≤ |yk| − |xk|. Then we set x′ = x−1

1 y1x. If |y1| − |x1| = 0, we find |x′| = k

and gcd(x′, y) 6= 1, a contradiction to d(Zk(a),Zl(a)) = l. Otherwise, if |y1| − |x1| > 0,
then k = |x| < |x′| < |y| = l, a contradiction to k and l adjacent. �

Theorem 2.2.16. Let H be a reduced atomic monoid. Then

cad(H) = sup{µad(a) | a ∈ H, Aa(∼H,mon) 6= ∅}.

Proof. By Theorem 2.2.12 and Definition 2.2.10, we find

cad(H) = µad(H) = sup{µad(a) | a ∈ H}.

Thus it suffices to show that

sup{µad(a) | a ∈ H} = sup{µad(a) | a ∈ H, Aa(∼H,mon)}.

In fact, we only have to show that sup{µad(a) | a ∈ H} ≤ sup{µad(a) | a ∈ H, Aa(∼H,mon)}.
Now let a ∈ H and µad(a) = k ∈ N. Then there is l ∈ L(a) with l < k, l adjacent to k, and
d(Zk(a),Zl(a)) = k. Now let x ∈ Zl(a) and y ∈ Zk(a). Then we have gcd(x, y) = 1. By
Lemma 2.2.15, we have (x, y) ∈ Aa(∼H,mon) 6= ∅. �

2.2.3. The monotone catenary degree and some special situations.

Corollary 2.2.17. Let H be a reduced atomic monoid. Then

cmon(H) = sup({µeq(a) | a ∈ H, Aa(∼H,eq), |Ra,k| > 1 for some k ∈ L(a)}

∪ {µad(a) | a ∈ H, Aa(∼H,mon)}).

Proof. The result follows immediately by Theorem 2.2.8 and Theorem 2.2.16. �

Lemma 2.2.18. Let H be a reduced atomic monoid. Then

1. ceq(H) ≤ sup{|y| | (x, y) ∈ A(∼H,eq), x 6≈eq y}.
2. cad(H) ≤ sup{|y| | (x, y) ∈ A(∼H,mon), |x| < |y|, |x|, |y| ∈ L(πH(x)) adjacent, and

there is no monotone R-chain from x to y}.
3. cmon(H) ≤ sup{|y| | (x, y) ∈ A(∼H,mon), there is no monotone R-chain from x to
y, and either |x| = |y| or |x|, |y| ∈ L(πH(x)) are adjacent}.

Proof.
1. The inequality ceq(H) ≤ sup{|y| | (x, y) ∈ A(∼H,eq) has been proven in [3, Propo-

sition 4.4.3]. The slightly stronger statement here, follows immediately by the
definition of µeq(·); see Definition 2.2.2.2.

— 21 —



2.2. THE MONOTONE CATENARY DEGREE

2. By Theorem 2.2.16, we have cad(H) ≤ sup{µad(a) | a ∈ H, Aa(∼H,mon) 6= ∅}. Now
the assertion follows from Lemma 2.2.11, Lemma 2.2.15, and the definition of µad(·),
see Definition 2.2.10.

3. The assertion now follows from

cmon(H) = sup{ceq(H), cad(H)}, and A(∼H,eq) ⊂ A(∼H,mon). �

Lemma 2.2.19. Let H be a reduced atomic monoid.

1. If H is half-factorial, then cad(H) = 0 and cmon(H) = ceq(H) = c(H).
2. If a ∈ H satisfies |L(a)| ≤ 2, then µad(a) ≤ t(H).

Proof.

1. Since, for all a ∈ H, |L(a)| = 1, we have no adjacent lengths, it follows that
cad(H) = 0, and thus cmon(H) = ceq(H). As—in this special situation—every chain
of factorizations is an equal-length chain of factorizations, we get ceq(H) = c(H).

2. Let a ∈ H e such that |L(a)| ≤ 2. If |L(a)| = 1, then µad(a) = 0. Now suppose
|L(a)| = 2. If µad(a) = 0, then there is nothing to show. Now suppose µad(a) >
0. Then µad(a) = max L(a), and thus gcd(x, y) = 1 for all x, y ∈ Z(a) with
|x| = min L(a) and |y| = max L(a). Let x, y ∈ Z(a) with |x| = min L(a) and
|y| = max L(a) and choose u ∈ A(H) such that x ∈ Z(a) ∩ uH×Z(H). Then there
is no y′ ∈ Z(a) ∩ uH×Z(H) with |y′| = |y|. Now we find

t(H) ≥ t(a, uH×) ≥ d(y,Z(a) ∩ uH×Z(H)) = |y| = max L(a) = µad(a). �

2.2.4. The m-adjacent catenary degree.
Next we formulate another variant of the catenary degree, which is a somewhat similar to
the adjacent catenary degree and equals it in a special situation. The main difference is
that we can prove that the m-adjacent catenary degree is finite for tame monoids when m
is sufficiently large.

Definition 2.2.20. Let H be a reduced atomic monoid.

1. Let a ∈ H and M ⊂ N. Then we set

ZM (a) = {x ∈ Z(a) | |x| ∈M}.

2. For a ∈ H and m ∈ N, we define

cad,m(a) = sup{d(Zk(a),Z[k−m,k)(a)) | k ∈ L(a)}

as the m-adjacent catenary degree of a.
Also, cad,m(H) = sup{cad,m(a) | a ∈ H} is called the m-adjacent catenary degree
of H.

Obviously, we find

cad,m(H)


= 0 m < min4(H)

≤ cad(H)

= cad(H) 4(H) = {n} and n ≤ m < 2n.
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Definition 2.2.21. Let H be a reduced atomic monoid. For a ∈ H and m ∈ N, we set

µad,m(a) = sup{k ∈ L(a) | d(Zk(a),Z[k−m,k)(a)) = k}.

Then we set µad,m(H) = sup{µad,m(a) | a ∈ H}.

Since the definitions of the m-adjacent catenary degree and of µad,m(H) are similar
to those of the adjacent catenary degree and µad(H), we can now prove the analog of
Theorem 2.2.12.

Theorem 2.2.22. Let H be a reduced atomic monoid and m ∈ N. Then

cad,m(a) ≥ µad,m(a) for all a ∈ H and cad,m(H) = µad,m(H).

Proof. For m < min4(H), we have cad,m(H) = 0 = µad,m(H) by definition. Now let
m ∈ N and m ≥ min4(H).
First we let a ∈ H and show that cad,m(a) ≥ µad,m(a), after which cad,m(H) ≥ µad,m(H)
follows by passing to the supremum on both sided. If µad,m(a) = 0 or µad,m(a) = ∞,
this is trivial. Now let µad,m(a) = k ∈ N and [k −m, k) ∩ L(a) = {l1, . . . , ln}. Then, by
Definition 2.2.20.2, cad,m(a) ≥ d(Zk(a),Z[k−m,k)(a)) = k = µad,m(a).
Now we prove µad,m(H) ≥ cad,m(H). We must prove that cad,m(a) ≤ µad,m(H) for all
a ∈ H. Assume to the contrary that there is some a ∈ H such that cad,m(a) > µad,m(H).
Let k ∈ N be minimal such that there is a ∈ H with cad,m(a) = d(Zk(a),Z[k−m,k)(a)). If
d(Zk(a),Z[k−m,k)(a)) < k, then there are some x ∈ Zk(a) and y ∈ Z[k−m,k)(a) such that
g = gcd(x, y) 6= 1. If b = πH(g−1x), then k− |g|, |y| − |g| ∈ L(b)∩ [k− |g| −m, k− |g|] and

cad,m(a) = d(Zk(a),Z[k−m,k)(a)) ≤ d(Zk−|g|(b),Z[k−|g|−m,k−|g|)(b)) ≤ cad,m(b),

and, by the minimal choice of k, we infer that cad,m(b) ≤ µad,m(H), a contradiction. �

Lemma 2.2.23. Let H be a reduced atomic monoid and t(H) <∞. Then

cad,m(H) ≤ t(H) for all m ≥ t(H).

Proof. Let m ≥ t(H). By Theorem 2.2.22, it suffices to show that µad,m(a) ≤ t(H)
for all a ∈ H. Let a ∈ H. If µad,m(a) = 0, then there is nothing to show. Now suppose
µad,m(a) = k > 0. Then we have L(a) ∩ [k −m, k) = {l1, . . . , ln} and d(Zk(a),Zli(a)) = k

for all i ∈ [1, n]. Then gcd(x, y) = 1 for all x ∈ Zk(a) and y ∈ Zl1(a). Now let x ∈ Zk(a),
y ∈ Zl1(a), and choose u ∈ A(H) such that y ∈ Z(a) ∩ uH×Z(H). We find

(2.2.1) t(H) ≥ t(a, uH×) ≥ d(x,Z(a) ∩ uH×Z(H))

= min{d(x,Zl(a) ∩ uH×Z(H)) | l ∈ L(a), l 6= k} ≥ min{k,m+ 1} = k = µad,m(a),

since m+ 1 > t(H). �

Another interesting observation arising from the proof of Lemma 2.2.23 is the fact
that the crucial inequality (2.2.1) might fail for m < t(H) for some a ∈ H (of course with
µad,m(a) > 0). Unfortunately, Lemma 2.2.23 can never be used to bound cad(H) since
cad(H) = cad,m(H) for m = min4(H) if #4(H) = 1, but then t(H) ≥ m+ 2 > m, and
therefore Lemma 2.2.23 does not hold for cad(H).
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2.3. AN ALGORITHMIC APPROACH TO THE COMPUTATION OF ARITHMETICAL
INVARIANTS

2.3. An algorithmic approach to the computation of arithmetical invariants

By [14, Theorem 3.7.1], the arithmetic of weakly Krull domains, e.g. some (non-
principal) order in an algebraic number field or R = Fp[Xn, . . . , X2n−1] with p ∈ P
and n ∈ N≥2, can mostly be described by studying appropriate T -block monoids, i.e.
B(G,T, ι) ⊂ F(G) × T . In this section, we exploit the results from [6], [7], [22], and
Section 2.1 and Section 2.2, mainly (2.1.1), Theorem 2.1.14.2, and Corollary 2.2.17 together
with recent programming techniques—see [15] and [20]—and parallelization to explicitly
compute various arithmetical invariants, namely the elasticity, the catenary degree, the
monotone catenary degree, and a bound for the tame degree of the studied domains.

2.3.1. Preliminaries about zero-sum sequences and T -block monoids.
In order to be able to describe the set of atoms of a T -block monoid precisely, we use the
terminology of sequences over finite abelian groups.

For our algorithmic considerations in the forthcoming sections, it will be very useful to
have some sort of order defined on the elements of a finite abelian group G. By the structure
theorem for finitely generated abelian groups, there are uniquely determined r ∈ N0 and
n1, . . . , nr ∈ N such that there is a group isomorphism ϕ : G→ Z/n1Z× . . .× Z/nrZ and
1 < n1 | . . . | nr. For i ∈ [1, r), we choose [0, ni) as a system of representatives for Z/niZ.
Now we can compare two elements g1, g2 ∈ G by comparing ϕ(g1) and ϕ(g2) with respect
to the lexicographic order. For short, we simply write g1 ≤ g2 respectively g1 ≥ g2.

In particular in subsection 2.3.4, we will need some kind of coordinate representation for
the elements of a T -block monoid, i.e. a monoid isomorphism mapping a T -block monoid
onto a submonoid of Zm × Z/n1Z × . . . × Z/nrZ for some m, r ∈ N0 and n1, . . . , nr ∈
N. Let G be a finite abelian group, T a finitely generated monoid, and ι : T → G

a homomorphism. Let T = D1 × . . . × Dr be a product of finitely primary monoids
Di ⊂ [p(i)

1 , . . . , p
(i)
ri ]× D̂i

× = D̂i where ri ∈ N, D̂i
× are finitely generated abelian groups for

i ∈ [1, r]. Then there are uniquely determined li, ki ∈ N0 such that there is an isomorphism
φi : D̂i

×
→ Zli × Z/n(i)

1 Z × . . . × Z/n(i)
ki

with 1 < n
(i)
1 | . . . | n(i)

ki
for i ∈ [1, r]. This

isomorphism can be extended to an isomorphism φ̄i : D̂i → N ri
0 × φi(D̂i

×) for i ∈ [1, r].
Now there is an isomorphism φ = φ̄1 × . . .× φ̄r : T̂ → φ̄1(D̂1)× . . .× φ̄r(D̂r). This again
can be extended to an isomorphism ϕ̄ : F(G)× T̂ → N#G

0 × φ(T̂ ). Now we can define the
desired isomorphism by restriction of ϕ̄ to the T -block monoid B(G,T, ι) as follows:
(2.3.1)

ϕ = ϕ̄|B(G,T, ι) : B(G,T, ι)→ ϕ̄(B(G,T, ι)) ⊂ N#G
0 ×

r∏
i=1

Nri
0 × Zli ×

ki∏
j=1

Z/n(i)
j Z

 .

2.3.2. The set of atoms A(G) of a block monoid.
Based on ideas from [15], we give an algorithm for the computation of the set of atoms A(G)
for a finite additive abelian group G. The problem of computing A(G) grows exponentially
in terms of #G, but, for very small groups as the ones involved in subsection 2.3.5, it can
be easily performed—sometimes even by hand. Unfortunately, we have to do some sort
of brute force search in the set of all S ∈ F(G) with |S| ≤ D(G). But with the algorithm
presented below, we can avoid most of the redundant checks and therefore speed up the
computation dramatically.
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Algorithm 1 Recursive Atom Search: A← RAS(A,S,Σ, B)
for all g ∈ B do
S′ ← Sg

if g ≤ −σ(S′) then
A← A ∪ {S′(−σ(S′))}

end if
Σ′ ← Σ
B′ ← ∅
for all g′ ∈ B do

if g + g′ ∈ Σ then
Σ′ ← Σ′ ∪ {g′}

else
B′ ← B′ ∪ {g′}

end if
end for
if #B′ > 0 then
A← RAS(A,S′,Σ′, B′)

end if
end for
return A

Algorithm 2 Atoms Computation Algorithm 1: A(G)← ACA1(G)
A← {0}
for all g ∈ G \ {0} do

if g ≤ −g then
A← A ∪ {g(−g)}

end if
Σ← {0, g}
B ← G \ {0,−g}
S ← g

if #B > 0 then
A← RAS(A,S,Σ, B)

end if
end for
return A

Since modular arithmetic on vectors with multiple coordinates is quite inefficient, it is
necessary for a fast execution of the RAS, Algorithm 2.3.2, to pre-compute the sums g+ g′.
This can be done once in the ACA1, Algorithm 2.3.2, before the main loop. For additional
details on speeding up this type of algorithms by special alignment of the pre-computed
data and on the parallelization aspects, the reader is referred to [15, Section 3].

2.3.3. The set of atoms of a T -block monoid.

Lemma 2.3.1. Let G be a finite additive abelian group, T a reduced atomic monoid,
ι : T → G a homomorphism, and B(G,T, ι) ⊂ F(G)×T the T -block monoid over G defined
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by ι. Furthermore, let each class in G contain some p ∈ P , and let ῑ : Z(T )→ F(G) be the
homomorphism generated by the extension of ι onto Z(T ) such that, for a factorization
z = a1 · . . . · an ∈ Z(T ) with ai ∈ A(T ) for i ∈ [1, n], we have ῑ(z) = ι(a1) · . . . · ι(an).
Then we have

(2.3.2) A(B(G,T, ι)) =

{Sπ(z) | S ∈ F(G), z ∈ Z(T ), Sῑ(z) ∈ A(G), @n ≥ 2 : ∃Si ∈ F(G), zi ∈ Z(T )

with Siῑ(zi) ∈ A(G) for i ∈ [1, n] : S1π(z1) · . . . · Snπ(zn) = Sπ(z)}

Proof. Clearly, every atom a ∈ A(B(G,T, ι)) is of the form a = Sπ(z) with S ∈ F(G),
z ∈ Z(T ), and Sῑ(z) ∈ A(G). Now suppose we have n ∈ [2,D(G)], Si ∈ F(G), zi ∈ Z(T ),
Siῑ(zi) ∈ A(G) for i ∈ [1, n] and Sπ(z) = S1π(z1) · . . . · Snπ(zn). Obviously then, a /∈
A(B(G,T, ι)). Now the other inclusion is obvious. �

In general, it is very hard to calculate A(B(G,T, ι)) explicitly by the characterization
in (2.3.2). But if we restrict ourselves to a finite group G and a finitely generated reduced
monoid T such that A(G), A(T ), and ι(a) for a ∈ A(T ) are all known explicitly, we can
formulate Algorithm 2.3.3 for the computation of the set of atoms of a T -block monoid.

2.3.4. Computing arithmetical invariants of a T -block monoid.
Throughout this section, we silently use the isomorphism defined in (2.3.1). Thus we only
have to work with submonoids

S ⊂ Zm × Z/n1Z× . . .× Z/nrZ with m, r ∈ N0 and n1, . . . , nr ∈ N

such that S ∼= ϕ(B(G,T, ι)) (identify!), where G is an additively written finite abelian
group, T is a product of finitely many reduced finitely primary monoids of rank 1, ι : G→ T

is a homomorphism, and ϕ is the isomorphism defined in (2.3.1). If T is not the product of
only finitely many reduced finitely primary monoids of rank 1, then T would not be finitely
generated. Now we know A(S) explicitly, since, obviously, A(S) = ϕ(A(B(G,T, ι))) and
A(B(G,T, ι)) can be computed explicitly by the ACA2, see Algorithm 2.3.3.

For the computation of the tame degree, we use Definition 2.1.13 and Theorem 2.1.14.2;
for additional reference on this computation, see [6, Section 4].

Now we are ready to describe the computation step by step.
2.3.4.1. Finding the elements of A(∼S).

The first step is finding the elements of A(∼S) explicitly. Unfortunately, this is a very hard
task. Probably, the most efficient way is the following one as described in [7, Sections 1
and 2].

1. Since we know A(S) explicitly, we can write the atoms of S in their coordinates as
vectors:

A(S) = {(a(1)
1 , . . . , a(1)

m , a
(1)
m+1 mod n1, . . . , a

(1)
m+r mod nr), . . .} .
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Algorithm 3 Atoms Computation Alg. 2: A(B(G,T, ι))← AA2(G,T,A(G),A(T ), ι)
A← ∅
D ← 0
for all S ∈ A(G) do

if |S| > D then
D ← |S|

end if
A← A ∪ {(S, 1)}

end for
F0 ← ∅
for all a ∈ A(T ) do

for all (S, 1) ∈ A do
if ι(a) | S then
F0 ← F0 ∪ {(ι(a)−1S, a)}

end if
end for

end for
E ← ∅
n← 1
while n < D and Fn−1 6= ∅ do
E ← E ∪ Fn−1

E ← EF0

Fn ← ∅
for all a ∈ A(T ) do

for all (S, b) ∈ A do
if ι(a) | S then
Fn ← Fn ∪ {(ι(a)−1S, ab)

end if
end for

end for
n← n+ 1

end while
return A ∪ F0 ∪ . . . ∪ Fn−1

2. By [7, Section 2], finding the elements of A(∼S) is equivalent to determining the
minimal positive solutions of the following system of linear diophantine equations:

(2.3.3)
x1a

(1)
1 + . . . + xka

(k)
1 − y1a

(1)
1 − . . . − yka

(k)
1 = 0

...
...

x1a
(1)
m+r + . . . + xka

(k)
m+r − y1a

(1)
m+r − . . . − yka

(k)
m+r ≡ 0 mod nr

We write a solution (x1, . . . , xk, y1, . . . , yk) as ((x1, . . . , xk), (y1, . . . , yk)).
3. Again, by [7, Section 2] and by [23, Section 2], finding the set of minimal positive

solutions is equivalent to finding the set of minimal positive solutions for the

— 27 —



2.3. AN ALGORITHMIC APPROACH TO THE COMPUTATION OF ARITHMETICAL
INVARIANTS

following enlarged system and then projecting back by the map and removing the
zero element (if appearing after the projection) from the set of solutions:

(2.3.4)
x1a

(1)
1 + . . . − y1a

(1)
1 − . . . = 0

...
...

x1a
(1)
m+r + . . . − y1a

(1)
m+r − . . . + xk+rnr − yk+rnr = 0

Φ :
{

Nk+r
0 × Nk+r

0 → Nk0 × Nk0
((x1, . . . , xk+r), (y1, . . . , yk+r)) 7→ ((x1, . . . , xk), (y1, . . . , yk)).

One of the most efficient algorithms for finding these solutions is due to Contejean
and Devie; see [8]. Nevertheless, this might take a very long time since the problem
of determining the set of all minimal non-negative solutions of a system of linear
diophantine equations is well known to be NP-complete.

2.3.4.2. Removing unnecessary elements.
Clearly, elements of the form ((1, 0, . . . , 0), (1, 0, . . . , 0)) are minimal solutions. But as
elements of A(∼S), these elements do not carry any information about the arithmetic of
S. Therefore we may simply drop them. Since, for any two factorizations, (x, y) ∈ Z(S)
is equivalent to (y, x) ∈ Z(S), we may also reduce the number of pairs by a factor of two.
This smaller set will be denoted by A(∼S)∗ = {((x1, . . . , xk), (y1, . . . , yk)), . . .}.

2.3.4.3. Computing the elasticity.
By our finiteness assumptions on T , i.e. T is finitely generated, we know this set is finite.
Thus we can simply compute the elasticity using Proposition 2.1.9.2 as follows:

ρ(S) = max
{
x1 + . . .+ xk
y1 + . . .+ yk

,
y1 + . . .+ yk
x1 + . . .+ xk

∣∣∣∣ ((x1, . . . , xk), (y1, . . . , yk)) ∈ A(∼S)∗
}
.

2.3.4.4. Computing the catenary degree.
By Equation 2.1.1, we have to consider only elements a ∈ S such that their factorizations
appear as part of an element of A(∼S) and such that their sets of factorizations consist
of more than one R-equivalence class. Then we get the catenary degree by taking the
maximum over µ(a) for all those a ∈ S.

2.3.4.5. Computing the tame degree.
After having computed Z(a) for all a ∈ S such that Aa(∼S) 6= ∅, we can apply Theo-

rem 2.1.14.1 for every u ∈ A(S). Since there are only finitely many, we get the tame degree
as the maximum of these values.

2.3.4.6. Computing the monotone catenary degree. For computing the monotone cate-
nary degree, we compute the equal catenary degree ceq(S) and the adjacent catenary degree
cad(S). We start with the adjacent catenary degree and proceed like in 2.3.4.1. We use
the fact that ∼S,mon= {(x, y) ∈∼S | |x| ≤ |y|} and again [7, Section 2]. Now finding the
elements of A(∼S,mon) is equivalent to determining the minimal positive solutions of a
system of linear diophantine equations.

Before we construct this finite system of linear diophantine equations explicitly, we
formulate a short lemma.

Lemma 2.3.2. Let H be a reduced finitely generated atomic monoid.
Then ∼H,mon is finitely generated.
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Algorithm 4 Recursive R-Class Finder: R ← RCF(R,Z = {z1, . . . , zn})
r ← {z1}
Z← Z \ {z1}
n← n− 1
Z = {z1, . . . , zn} {renumber}
i← 1
while i < n do

for i = 1 to n do
if gcd(zi, x) 6= 1 for some x ∈ r then
r ← r ∪ {zi}
Z← Z \ {zi}
n← n− 1
Z = {z1, . . . , zn} {renumber}
break

end if
end for

end while
R∪ {r}
if Z 6= ∅ then
R ← RCF(R,Z)

end if
return R

Algorithm 5 Catenary degree Computation Algorithm: c(S)← CCA(A(S),A(∼S)∗)
A← ∅
for all (x, y) ∈ A(∼S)∗ do
A← A ∪ {π(x)}

end for
c← 0
for all a ∈ A do
Ra ← RCF(Z(a))
if #Ra > 1 then
µ← min{|x| | Ra}
if c < µ then
c← µ

end if
end if

end for
return c

Proof. Let H be a reduced finitely generated atomic monoid. Since ∼H⊂ Z(H)×Z(H)
is then a saturated submonoid of a finitely generated monoid, ∼H is finitely generated by
[14, Proposition 2.7.5]. Now assume ∼H has n ∈ N generators. Then the atoms of ∼H can
be described as the minimal solutions of a system of finitely many, say k, linear diophantine
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equations in 2n variables as in step 2.3.4.1 above. Then the atoms of ∼H,mon can be
described as the minimal solutions of a system of k + 1 linear diophantine equations in
2n+ 1 variables—see below for the explicit description of this system of linear diophantine
equations. Thus ∼H,mon is finitely generated. �

The system is (2.3.3), with one additional variable z and one equation, namely,

x1 + . . .+ xk − y1 − . . .− yk + z = 0.

The coefficients at z are zero in all other equations. Now we have two possibilities.
• Either we proceed by the same steps as in 2.3.4.1 and solve this directly
• or we use the incremental version of the algorithm of Devie and Contejoud (see [8,

Section 9]) and the set A(∼S), which we already computed in 2.3.4.1.
Next we can reduce the set of relations, which we must consider, as in 2.3.4.2. By
Theorem 2.2.16, we have to consider only elements a ∈ S such that Aa(∼S,mon) 6= ∅. Then
we get the adjacent catenary degree by taking the maximum over µad(a) for all those a.
For the computation of the equal catenary degree, we must know the elements of A(∼S,eq).
But these are already known, since A(∼S,eq) ⊂ A(∼S,mon). Here we can again reduce the
set of relations which we must consider, as in 2.3.4.2. By Theorem 2.2.12, we have to
consider only elements a ∈ S such that Aa(∼S,eq) 6= ∅ and |Ra,k| > 1 for some k ∈ L(a).
Now this can be done by applying Algorithm 4 on Zk(a) instead of Z(a). Then we get the
equal catenary degree by taking the maximum over µeq(a) for all those a.

Now we find the monotone catenary degree by cmon(S) = max{cad(S), ceq(S)}.
2.3.4.7. Reducing the computation time for the catenary degree.

If we are only interested in the computation of the catenary degree, we can speed up
the very time consuming computations in step 2.3.4.1 in the following way. In favor
of Equation 2.1.1, we may restrict our search for minimal solutions of the system of
linear diophantine equations (2.3.4) to solutions (x1, . . . , xk+r, y1, . . . , yk+r) such that∑k
i=1 xi ≤ c(S) and

∑k
i=1 yi ≤ c(S). Of course, we do not know c(S) a priori, but we may

replace it with any upper bound—the better the bound, the faster the computation. In
our special situation of T -block monoids, we can find a reasonably good bound by [14,
Theorem 3.6.4.1] and by [14, Proposition 3.6.6]. Formulated in our terminology, these
results read as follows.

Theorem 2.3.3. Let G be an additively written abelian group, T a reduced finitely
generated monoid, ι : T → G a homomorphism, and B(G,T, ι) ⊂ F(G) × T the T -block
monoid over G defined by ι. Then

1. ρ(B(G,T, ι),F(G)× T ) ≤ ρ(T ).
2. c(B(G,T, ι)) ≤ ρ(T )D(G) max{c(T ),D(G)}.

Now we set C = ρ(T )D(G) max{c(T ),D(G)} for the upper bound. Though this does not
speed up the search for minimal solutions itself that much, it is a very efficient (additional)
termination criterion in our variant of the algorithm due to Contejean and Devie; for
reference on the originally proposed algorithm, see [8].
Unfortunately, this method has one drawback for the computation of the elasticity and
the tame degree. As we no longer compute all minimal solutions to our system of linear
diophantine equations, we no longer compute all elements in A(∼S), and therefore we
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cannot compute more than a lower bound for the elasticity in step 2.3.4.3 and for the tame
degree in step 2.3.4.5.

2.3.4.8. Computing the elasticity from an appropriate subset of A(∼S).
In [9], Domenjoud proposed an algorithm for computing the set of minimal solutions of
a system of linear diophantine equations, which computes the set of minimal solutions
with minimal support in a first step. All other minimal solutions can then be found by
“appropriate” linear combinations of them using non-negative rational coefficients. With
this interesting fact in mind, we consider the following lemma.

Definition 2.3.4. Let H be a reduced atomic monoid. For x ∈ Z(H), we set

supp(x) = {u ∈ A(H) | u | x}.

Lemma 2.3.5. Let H be a finitely generated atomic monoid. Then

ρ(H) = sup
{ |x|
|y|

∣∣∣∣ (x, y) ∈ A′(∼H)
}
,

where A′(∼H) = {(x, y) ∈ A(∼H) | supp(x) ∪ supp(y) is minimal}.

Proof. Let (x, y) ∈ A(∼H). Then there are n ∈ N, (xi, yi) ∈ A′(∼H), qi ∈ Q with
0 ≤ qi < 1 for i ∈ [1, n] such that

(x, y) =
n∏
i=1

(xi, yi)qi .

Such a decomposition exists, since the equivalent one exists for the set of solutions of the
associated system of linear diophantine equations, see [9, Theorem 3]. When we pass to
the lengths, we find |x| =

∑n
i=1 qi|xi| and |y| =

∑n
i=1 qi|yi|. This yields

|x|
|y|
· |y| = |x| =

n∑
i=1

qi|xi| =
n∑
i=1

qi
|xi|
|yi|
|yi| ≤

nmax
i=1

|xi|
|yi|

n∑
i=1

qi|yi| =
nmax
i=1

|xi|
|yi|
· |y| .

Thus we find
|x|
|y|
≤ nmax

i=1

|xi|
|yi|

.

Since A′(∼H) ⊂ A(∼H), the assertion now follows by Proposition 2.1.9.2. �

Thus we can restrict ourselves to the minimal solutions with minimal support for
computing the elasticity.
As far as computational performance is concerned, the most interesting point of this
approach is that there are straightforward optimizations of Domenjoud’s algorithm for
symmetric systems of linear diophantine equations like the one in (2.3.4).

2.3.5. Explicit examples F3[X2, X3], F2[X2, X3], and F2[X2, X5].
Let p ∈ {2, 3}. Let R = Fp[X2, X3]. Then R is a one-dimensional noetherian domain with
integral closure R̂ = Fp[X] and conductor f = (R : R̂) = X2R̂, where X ∈ R̂ is a prime
element. Thus R is an order in the Dedekind domain R̂, and XR̂ is the only maximal ideal
of R̂ containing f. Furthermore, R̂× = R× = F×p . By the computations in [14, Special case
3.2 in Example 3.7.3], we have G = Pic(R) ∼= Fp.
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2.3.5.1. F3[X2, X3].
Now let p = 3. Since #G = 3, we write G = {0, e, e′}. Clearly—or by applying
the ACA1, see Algorithm 2.3.2—we have A(G) = {0, ee′, e3, e′3}. Now we apply [14,
Theorem 3.7.1] and switch to the block monoid, which is a T -block monoid over G, say
B(G,T, ι) ⊂ F(G) × T , where T is the reduced finitely primary monoid generated by
A(T ) = {Xng | n ∈ {2, 3}, g ∈ G} and ι is the uniquely determinated homomorphism
ι : G→ T such that ι(Xng) = g for all n ∈ {2, 3} and g ∈ G.
Now we apply the ACA2 (see Algorithm 2.3.3).

1. F0 = {(0, 1), (ee′, 1), (e3, 1), (e′3, 1)}
2. A = {(Xng, g) | n ∈ {2, 3}, g ∈ G}
3. (S, 1) ∈ F0, S = 0

(a) (Xk0,0) ∈ B = {(Xn,0) | n ∈ {2, 3}}, k ∈ {2, 3}
(b) F1 = {(1, Xn0) | n ∈ {2, 3}}

4. (S, 1) ∈ F0, S = ee′

(a) (Xkg, g) ∈ B = {(Xn, h) | n ∈ {2, 3}, h ∈ {e, e′}}, k ∈ {2, 3}, g ∈ {e, e′}
(b) F1 = F1 ∪ {(g′, Xkg) | k ∈ {2, 3}, {g, g′} = {e, e′}}

5. (S, 1) ∈ F0, S = g3, g ∈ {e, e′}
(a) (Xkg, g) ∈ B = {(Xng, g) | n ∈ {2, 3}, k ∈ {2, 3}
(b) F1 = F1 ∪ {(g2, Xng) | n ∈ {2, 3}
F1 = {(1, Xn0) | n ∈ {2, 3}} ∪ {(g,Xng′) | n ∈ {2, 3}, {g, g′} = {e, e′}} ∪
{(g2, Xng) | n ∈ {2, 3}, g ∈ {e, e′}}

6. n = 2
7. n ≤ D(G) = 3 and F1 6= ∅: true

(a) E = F1F1

(b) F2 = ∅
(c) (S, t) ∈ F1, S = g, g ∈ {e, e′}

(i) (Xng, g) ∈ B = {(Xng, g) | n ∈ {2, 3}}, g ∈ {e, e′}
(ii) (S′, t′) = (1, Xk(g + g′)) = (1, Xk0), k ∈ {4, 5, 6}, {g, g′} = {e, e′}
(iii) (S′, t′) = (1, Xk′0)(1, Xk′′0) ∈ E = F1F1, k′ + k′′ = k, k′, k′′ ∈ {2, 3}

(d) (S, t) ∈ F1, S = g2, g ∈ {e, e′}
(i) (Xkg, g) ∈ B = {(Xng, g) | n ∈ {2, 3}, k ∈ {2, 3}, g ∈ {e, e′}
(ii) (S′, t′) = (g,Xk(g + g)) = (g,Xkg′), k ∈ {4, 5, 6}, {g, g′} = {e, e′}
(iii) (S′, t′) = (1, Xk′0)(g,Xk′′g′) ∈ F1F1

(e) n = n+ 1 = 3
F2 = ∅

8. n ≤ 3 and F2 6= ∅: false
9. A(B(G,T, ι)) =

⋃n−1
i=0 Fi = F0 ∪ F1 ∪ F2 = F0 ∪ F1

Finally, we find

A(B(G,T, ι)) = {(0, 1), (ee′, 1), (e3, 1), (e′3, 1), (1, X20), (1, X30), (e, X2e′), (e, X3e′),

(e′, X2e), (e′, X3e), (e2, X2e), (e2, X3e), (e′2, X2e′), (e′2, X3e′)}.

Using the construction from the beginning of subsection 2.3.4, we find

T̂ ∼= N0 × Z/3Z and B(G,T, ι) ∼= S ⊂ N4
0 × Z/3Z .

— 32 —



2.3. AN ALGORITHMIC APPROACH TO THE COMPUTATION OF ARITHMETICAL
INVARIANTS

Then, for the set of atoms, we find

A(S) = {(1, 0, 0, 0, 0̄), (0, 1, 1, 0, 0̄), (0, 3, 0, 0, 0̄), (0, 0, 3, 0, 0̄), (0, 0, 0, 2, 0̄),

(0, 0, 0, 3, 0̄), (0, 1, 0, 2, 2̄), (0, 1, 0, 3, 2̄), (0, 0, 1, 2, 1̄), (0, 0, 1, 3, 1̄),

(0, 2, 0, 2, 1̄), (0, 2, 0, 3, 1̄), (0, 0, 2, 2, 2̄), (0, 0, 2, 3, 2̄)} .

Since the atom (1, 0, 0, 0, 0̄) is prime, we can restrict on a monoid S̄ ⊂ N3
0 ×Z/3Z with the

following set of atoms

A(S̄) = {(1, 1, 0, 0̄), (3, 0, 0, 0̄), (0, 3, 0, 0̄), (0, 0, 2, 0̄), (0, 0, 3, 0̄), (1, 0, 2, 2̄),

(1, 0, 3, 2̄), (0, 1, 2, 1̄), (0, 1, 3, 1̄), (2, 0, 2, 1̄), (2, 0, 3, 1̄), (0, 2, 2, 2̄), (0, 2, 3, 2̄)} .

Now we can find everything by using the algorithms presented at the end of subsec-
tion 2.3.4.

Even in the modified version of the algorithm in step 2.3.4.1—here the bound is 13.5—we
find about 7,500 minimal representations to consider after the reduction in step 2.3.4.2.

From those, we get c(F3[X2, X3]) = 3 in step 2.3.4.4. Since we did not compute all
minimal solutions, we find t(F3[X2, X3]) ≥ 4 in step 2.3.4.5.
By using the alternative approach from subsubsection 2.3.4.8, we find ρ(F3[X2, X3]) = 2.

2.3.5.2. F2[X2, X3].
Let p = 2. Then #G = 2, write G = {0, e}. Obviously—or by applying the ACA1,
see Algorithm 2.3.2—we have A(G) = {0, e2}. Now we apply [14, Theorem 3.7.1] as in
the case p = 3 and switch to the block monoid, which is a T -block monoid over G, say
B(G,T, ι) ⊂ F(G) × T , where T is the reduced finitely primary monoid generated by
A(T ) = {Xng | n ∈ {2, 3}, g ∈ G} and ι is the uniquely determinated homomorphism
ι : G→ T such that ι(Xng) = g for all n ∈ {2, 3} and g ∈ G.
Now we apply the ACA2, see Algorithm 2.3.3, as before and find

A(B(G,T, ι)) = {(0, 1), (e2, 1), (1, X20), (1, X30), (e, X2e), (e, X3e)} .

Using the construction from the beginning of subsection 2.3.4, we find

T̂ ∼= N0 × Z/2Z and B(G,T, ι) ∼= S ⊂ N3
0 × Z/2Z .

Then, for the set of atoms, we find

A(S) = {(1, 0, 0, 0̄), (0, 2, 0, 0̄), (0, 0, 2, 0̄), (0, 0, 3, 0̄), (0, 1, 2, 1̄), (0, 1, 3, 1̄)} .

Since the atom (1, 0, 0, 0̄) is prime, we can use the same arguments as in Lemma 1.2.16.4
and restrict on a monoid S̄ ⊂ N2

0 × Z/2Z with the following set of atoms

A(S̄) = {(2, 0, 0̄), (0, 2, 1̄), (0, 3, 1̄), (1, 2, 1̄), (1, 3, 1̄)} .

By Theorem 2.3.3, we find

c(F2[X2, X3]) ≤ ρ(T )D(G) max{c(T ),D(G)} = 9 .
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Since in this case step 2.3.4.1 can be performed easily without this bound, we compute all
atoms. Now, we find the following list of atoms after step 2.3.4.2:

((0, 0, 1, 3, 0), (0, 0, 0, 0, 3)), ((0, 1, 0, 0, 1), (0, 0, 1, 1, 0)), ((0, 2, 0, 1, 0), (0, 0, 1, 0, 1)),

((0, 3, 0, 0, 0), (0, 0, 2, 0, 0)), ((1, 0, 2, 0, 0), (0, 0, 0, 0, 2)), ((1, 2, 1, 1, 0), (0, 0, 0, 0, 3)),

((1, 3, 0, 0, 0), (0, 0, 0, 0, 2)), ((1, 0, 0, 0, 4), (0, 0, 0, 6, 0)), ((1, 0, 1, 0, 1), (0, 0, 0, 3, 0)),

((2, 0, 3, 0, 0), (0, 0, 0, 3, 1)), ((3, 0, 4, 0, 0), (0, 0, 0, 6, 0)), ((1, 0, 2, 0, 0), (0, 1, 0, 2, 0)),

((1, 0, 3, 0, 0), (0, 2, 0, 1, 1)), ((1, 1, 1, 0, 0), (0, 0, 0, 1, 1)), ((1, 4, 0, 0, 0), (0, 0, 1, 1, 1)),

((1, 1, 0, 0, 2), (0, 0, 0, 4, 0)), ((2, 1, 2, 0, 0), (0, 0, 0, 4, 0)), ((1, 2, 0, 0, 0), (0, 0, 0, 2, 0)).

Given this list, we immediately find ρ(F2[X2, X3]) = 2 in step 2.3.4.3.
Now we proceed with step 2.3.4.4. First we compute the elements involved in the atoms
and find

(3, 9, 1), (1, 5, 1), (1, 6, 1), (0, 6, 0), (2, 6, 0), (6, 12, 0), (3, 6, 1),

(4, 9, 0), (2, 9, 0), (2, 5, 0), (2, 8, 0), (4, 8, 0), (2, 4, 0).

Now we compute all factorizations for each of these elements and their decompositions into
R-classes:

(3, 9, 1) [(1, 3, 0, 0, 1), (1, 2, 1, 1, 0), (1, 0, 2, 0, 1),
(0, 1, 0, 2, 1), (0, 0, 1, 3, 0), (0, 0, 0, 0, 3)] 1 R-class

(1, 5, 1) [(0, 1, 0, 0, 1)] [(0, 0, 1, 1, 0)] 2 R-classes
(1, 6, 1) [(0, 2, 0, 1, 0)] [(0, 0, 1, 0, 1)] 2 R-classes
(0, 6, 0) [(0, 3, 0, 0, 0)] [(0, 0, 2, 0, 0)] 2 R-classes
(2, 6, 0) [(1, 3, 0, 0, 0), (1, 0, 2, 0, 0), (0, 1, 0, 2, 0)] [(0, 0, 0, 0, 2)] 2 R-classes
(6, 12, 0) [(3, 6, 0, 0, 0), (3, 3, 2, 0, 0), (3, 0, 4, 0, 0), (2, 4, 0, 2, 0),

(2, 3, 0, 0, 2), (2, 2, 1, 1, 1), (2, 1, 2, 2, 0), (2, 0, 2, 0, 2),
(1, 2, 0, 4, 0), (1, 1, 0, 2, 2), (1, 0, 1, 3, 1), (1, 0, 0, 0, 4),
(0, 0, 0, 6, 0)] 1 R-class

(3, 6, 1) [(1, 2, 0, 1, 0), (1, 0, 1, 0, 1), (0, 0, 0, 3, 0)] 1 R-class
(4, 9, 0) [(2, 3, 1, 0, 0), (2, 0, 3, 0, 0), (1, 2, 0, 1, 1),

(1, 1, 1, 2, 0), (1, 0, 1, 0, 2), (0, 0, 0, 3, 1)] 1 R-class
(2, 9, 0) [(1, 3, 1, 0, 0), (1, 0, 3, 0, 0), (0, 2, 0, 1, 1), (0, 1, 1, 2, 0),

(0, 0, 1, 0, 2)] 1 R-class
(2, 5, 0) [(1, 1, 1, 0, 0)] [(0, 0, 0, 1, 1)] 2 R-classes
(2, 8, 0) [(1, 4, 0, 0, 0), (1, 1, 2, 0, 0), (0, 2, 0, 2, 0), (0, 1, 0, 0, 2),

(0, 0, 1, 1, 1)] 1 R-class
(4, 8, 0) [(2, 4, 0, 0, 0), (2, 1, 2, 0, 0), (1, 2, 0, 2, 0),

(1, 1, 0, 0, 2), (1, 0, 1, 1, 1), (0, 0, 0, 4, 0)] 1 R-class
(2, 4, 0) [(1, 2, 0, 0, 0)] [(0, 0, 0, 2, 0)] 2 R-classes

From this one deduces c(F2[X2, X3]) = 3 and D(F2) + 1 + t(S) = 6 ≥ t(F2[X2, X3]) ≥
t(S) = 3.

Next, we compute the monotone catenary degree. For this, we proceed as in step 2.3.4.6
and start with the adjacent catenary degree. We find the following list of atoms of the
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monoid of monotone relations:

((0, 0, 0, 0, 3), (0, 0, 1, 3, 0)), ((0, 0, 0, 0, 2), (0, 1, 0, 2, 0)), ((0, 0, 0, 0, 2), (1, 0, 2, 0, 0)),

((0, 0, 0, 0, 3), (1, 2, 1, 1, 0)), ((0, 0, 0, 0, 2), (1, 3, 0, 0, 0)), ((0, 0, 0, 3, 1), (2, 0, 3, 0, 0)),

((0, 0, 0, 1, 1), (1, 1, 1, 0, 0)), ((0, 0, 0, 2, 0), (1, 2, 0, 0, 0)), ((0, 0, 1, 0, 1), (0, 2, 0, 1, 0)),

((0, 0, 2, 0, 0), (0, 3, 0, 0, 0)), ((0, 0, 1, 1, 1), (1, 4, 0, 0, 0)), ((0, 1, 0, 0, 1), (0, 0, 1, 1, 0)),

((1, 0, 0, 0, 4), (0, 0, 0, 6, 0)), ((1, 0, 1, 0, 1), (0, 0, 0, 3, 0)), ((1, 1, 0, 0, 2), (0, 0, 0, 4, 0)),

((1, 0, 2, 0, 0), (0, 1, 0, 2, 0)), ((1, 0, 3, 0, 0), (0, 2, 0, 1, 1)), ((1, 0, 4, 0, 0), (0, 3, 0, 0, 2)).

Next, we compute the elements involved in the atoms and find

(3, 9, 1), (2, 6, 0), (4, 9, 0), (2, 5, 0), (2, 4, 0), (1, 6, 1), (0, 6, 0),

(2, 8, 0), (1, 5, 1), (6, 12, 0), (3, 6, 1), (4, 8, 0), (2, 9, 0), (2, 12, 0).

The factorizations of these elements sorted by their lengths are

(3,9,1) 3 (0, 0, 0, 0, 3)
4 (1, 0, 2, 0, 1), (0, 1, 0, 2, 1), (0, 0, 1, 3, 0)
5 (1, 3, 0, 0, 1), (1, 2, 1, 1, 0)

(2,6,0) 2 (0, 0, 0, 0, 2)
3 (1, 0, 2, 0, 0), (0, 1, 0, 2, 0)
4 (1, 3, 0, 0, 0)

(4,9,0) 4 (1, 0, 1, 0, 2), (0, 0, 0, 3, 1)
5 (2, 0, 3, 0, 0), (1, 2, 0, 1, 1), (1, 1, 1, 2, 0)
6 (2, 3, 1, 0, 0)

(2,5,0) 3 (0, 0, 0, 1, 1)
3 (1, 1, 1, 0, 0)

(2,4,0) 2 (0, 0, 0, 2, 0)
3 (1, 2, 0, 0, 0)

(1,6,1) 2 (0, 0, 1, 0, 1)
3 (0, 2, 0, 1, 0)

(0,6,0) 2 (0, 0, 2, 0, 0)
3 (0, 3, 0, 0, 0)

(2,8,0) 3 (0, 1, 0, 0, 2), (0, 0, 1, 1, 1)
4 (1, 1, 2, 0, 0), (0, 2, 0, 2, 0)
5 (1, 4, 0, 0, 0)

(1,5,1) 2 (0, 1, 0, 0, 1), (0, 0, 1, 1, 0)
(6,12,0) 5 (1, 0, 0, 0, 4)

6 (2, 0, 2, 0, 2), (1, 1, 0, 2, 2), (1, 0, 1, 3, 1), (0, 0, 0, 6, 0)
7 (3, 0, 4, 0, 0), (2, 3, 0, 0, 2), (2, 2, 1, 1, 1), (2, 1, 2, 2, 0), (1, 2, 0, 4, 0)
8 (3, 3, 2, 0, 0), (2, 4, 0, 2, 0)
9 (3, 6, 0, 0, 0)

(3,6,1) 3 (1, 0, 1, 0, 1), (0, 0, 0, 3, 0)
4 (1, 2, 0, 1, 0)

(4,8,0) 4 (1, 1, 0, 0, 2), (1, 0, 1, 1, 1), (0, 0, 0, 4, 0)
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5 (2, 1, 2, 0, 0), (1, 2, 0, 2, 0)
6 (2, 4, 0, 0, 0)

(2,9,0) 3 (0, 0, 1, 0, 2)
4 (1, 0, 3, 0, 0), (0, 2, 0, 1, 1), (0, 1, 1, 2, 0)
5 (1, 3, 1, 0, 0)

(2,12,0) 4 (0, 0, 2, 0, 2)
5 (1, 0, 4, 0, 0), (0, 3, 0, 0, 2), (0, 2, 1, 1, 1), (0, 1, 2, 2, 0)
6 (1, 3, 2, 0, 0), (0, 4, 0, 2, 0)
7 (1, 6, 0, 0, 0).

From this we deduce cad(S) = 3.
In order to compute the equal catenary degree, we consider only the atoms which are in
the monoid of equal-length relations:

((0, 1, 0, 0, 1), (0, 0, 1, 1, 0)), ((1, 0, 1, 0, 1), (0, 0, 0, 3, 0)), ((1, 1, 0, 0, 2), (0, 0, 0, 4, 0))

((1, 0, 2, 0, 0), (0, 1, 0, 2, 0)), ((1, 0, 3, 0, 0), (0, 2, 0, 1, 1)), ((1, 0, 4, 0, 0), (0, 3, 0, 0, 2)).

Next, we compute the elements involved in the atoms and find

(1, 5, 1), (3, 6, 1), (4, 8, 0), (2, 6, 0), (2, 9, 0), (2, 12, 0).

Now we compute all factorizations for each of these elements and their decompositions into
R-equal classes.

(1,5,1) 2 [(0, 1, 0, 0, 1)] [(0, 0, 1, 1, 0)] 1 R-class
(3,6,1) 3 [(1, 0, 1, 0, 1)] [(0, 0, 0, 3, 0)] 2 R-classes

4 [(1, 2, 0, 1, 0)] 1 R-class
(4,8,0) 4 [(1, 1, 0, 0, 2), (1, 0, 1, 1, 1), (0, 0, 0, 4, 0)] 1 R-class

5 [(2, 1, 2, 0, 0), (1, 2, 0, 2, 0)] 1 R-class
6 [(2, 4, 0, 0, 0)] 1 R-class

(2,6,0) 2 [(0, 0, 0, 0, 2)] 1 R-class
3 [(1, 0, 2, 0, 0)] [(0, 1, 0, 2, 0)] 2 R-classes
4 [(1, 3, 0, 0, 0)] 1 R-class

(2,9,0) 3 [(0, 0, 1, 0, 2)] 1 R-class
4 [(1, 0, 3, 0, 0), (0, 1, 1, 2, 0), (0, 2, 0, 1, 1)] 1 R-class
5 [(1, 3, 1, 0, 0)] 1 R-class

(2,12,0) 4 [(0, 0, 2, 0, 2)] 1 R-class
5 [(1, 0, 4, 0, 0), (0, 2, 1, 1, 1), (0, 3, 0, 0, 2), (0, 1, 2, 2, 0)] 1 R-class
6 [(1, 3, 2, 0, 0), (0, 4, 0, 2, 0)] 1 R-class
7 [(1, 6, 0, 0, 0)] 1 R-class

From this we deduce ceq(S) = 3. Now we find cmon(F2[X2, X3]) = cmon(S) = 3.
2.3.5.3. F2[X2, X5].

The results in this case differ slightly from then ones we obtained above. We have
#G = 2, say G = {0, e}. Again, we have A(G) = {0, e2}. Now we apply [14, Theorem
3.7.1] as before and switch to the block monoid, which is a T -block monoid over G, say
B(G,T, ι) ⊂ F(G) × T , where T is the reduced finitely primary monoid generated by
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A(T ) = {Xng | n ∈ {2, 5}, g ∈ G} and ι is the uniquely determinated homomorphism
ι : G→ T such that ι(Xng) = g for all n ∈ {2, 5} and g ∈ G.
Now we apply the ACA2, see Algorithm 2.3.3, as before and find

A(B(G,T, ι)) = {(0, 1), (e2, 1), (1, X20), (1, X50), (e, X2e), (e, X5e)} .

Using the construction from the beginning of subsection 2.3.4, we find

T̂ ∼= N0 × Z/2Z and B(G,T, ι) ∼= S ⊂ N3
0 × Z/2Z .

Then, for the set of atoms, we find

A(S) = {(1, 0, 0, 0̄), (0, 2, 0, 0̄), (0, 0, 2, 1̄), (0, 0, 5, 1̄), (0, 1, 2, 1̄), (0, 1, 5, 1̄)} .

Since the atom (1, 0, 0, 0̄) is prime, we can use the same arguments as in Lemma 1.2.16.4
and restrict on a monoid S̄ ⊂ N2

0 × Z/2Z with the following set of atoms

A(S̄) = {(2, 0, 0̄), (0, 2, 1̄), (0, 5, 1̄), (1, 2, 1̄), (1, 5, 1̄)} .

Since, in this case, step 2.3.4.1 can be performed without any bound, we compute all atoms.
Now, we find a list of 25 atoms after step 2.3.4.2. Given this list, we immediately find
ρ(F2[X2, X5]) = 3 in step 2.3.4.3. Now we proceed with step 2.3.4.4 and obtain t(S) = 4,
c(F2[X2, X5]) = 5, and D(F2)+1+t(S) = 7 ≥ t(F2[X2, X5]) ≥ max{t(S), c(F2[X2, X5])} =
5. Next, we compute the monotone catenary degree. For this, we proceed as in step 2.3.4.6
and start with the adjacent catenary degree. We find cad(S) = 5. Next we compute the
equal catenary degree and find ceq(S) = 6. Now we find cmon(F2[X2, X5]) = cmon(S) =
6 > 5 = c(F2[X2, X5]).
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CHAPTER 3

Applications to special non-principal orders in algebraic
number fields

3.1. Half-factorial orders in algebraic number fields and their localizations

3.1.1. Monoid-theoretic preliminaries.

Definition 3.1.1. A monoid H is called finitely primary if there exist s, k ∈ N and a
factorial monoid F = [p1, . . . , ps]× F× with the following properties:

• H \H× ⊂ p1 · . . . · psF ,
• (p1 · . . . · ps)kF ⊂ H, and
• (p1 · . . . · ps)iF 6⊂ H for i ∈ [0, k).

If this is the case, then we call H a finitely primary monoid of rank s and exponent k.
Note that this definition is slightly more restrictive than the one given in [14, Definition
2.9.1]. By [14, Theorem 2.9.2.1], we get F = Ĥ, and therefore H ⊂ Ĥ = [p1, . . . , ps]×Ĥ× ⊂
q(H).
Then, for i ∈ [1, s], we denote by vpi : q(H)→ Z the pi-adic valuation of q(H).
Now let H ⊂ Ĥ = [p]× Ĥ× be a finitely primary monoid of rank 1 and exponent k. Then
we set Ui(H) = {u ∈ Ĥ× | piu ∈ H} for i ∈ N0.

As a first observation, we find

Ui(H) =

H
× i = 0

Ĥ× i ≥ k
and Ui(H)Uj(H) ⊂ Ui+j(H) for all i, j ∈ N0.

Definition 3.1.2. Let s ∈ N, e = (e1, . . . , es) ∈ Ns, k = (k1, . . . , ks) ∈ Ns, and H ⊂
Ĥ = [p1, . . . , ps]×Ĥ× be a finitely primary monoid of rank s and exponent max{k1, . . . , ks}.
Then H is a monoid of type (e,k) if

• vpi(H) = eiN0 ∪ N≥ki
for all i = [1, s],

• pk1
1 · . . . · pks

s Ĥ ⊂ H.

Lemma 3.1.3. Let H ⊂ Ĥ = [p1, . . . , ps]× Ĥ× be a reduced finitely primary monoid of
rank s and exponent k.

1. The following statements are equivalent:
(a) H is half-factorial.
(b) H is of rank 1 and vp1(A(H)) = {1}.
(c) H is of rank 1 and (U1(H))l = Ul(H) for all l ∈ N.

If any of these conditions hold, then A(H) = {p1ε | ε ∈ U1(H)}, (U1(H))k = Ĥ×,
and H is a monoid of type (1, k).

2. If H is a half-factorial monoid of type (1, k) and a1, . . . , ak+1, b ∈ A(H), then there
are some b1, . . . , bk ∈ A(H) such that a1 · . . . · ak+1 = bb1 · . . . · bk.
In particular, cmon(H) = c(H) ≤ t(H) ≤ k + 1.

— 38 —



3.1. HALF-FACTORIAL ORDERS IN ALGEBRAIC NUMBER FIELDS AND THEIR
LOCALIZATIONS

Proof.

1. (a)⇒ (b). If H is of rank s ≥ 2, then we find ρ(H) = ∞ by [14, Theorem
3.1.5.2 (b)]. Thus H is of rank 1. Now we prove #vp1(A(H)) = 1. [Then the
assertion follows since vp1(A(H)) = {n} with n ≥ 2 implies vp1(H) = nN0 6⊃
N≥k, a contradiction.] Suppose #vp1(A(H)) > 1. Let n = min vp1(A(H)), m ∈
vp1(A(H)) \ {n}, and ε, η ∈ Ĥ× be such that pn1ε, pm1 η ∈ A(H). Now we find

(pm1 η)k = (pn1ε)k(p
(m−n)k
1 ε−kηk).

On the left side there are k atoms and on the right side at least k+ 1—a contradic-
tion to H half-factorial.
(b)⇒ (a). Since vp1(A(H)) = {1}, we have L(a) = {vp1(a)}, i.e. #L(a) = 1, for
all a ∈ H \H×. Therefore, H is half-factorial.
(b)⇒ (c). Since vp1(A(H)) = {1}, we have A(H) = {p1u | u ∈ U1(H)}. Thus, for
all l ∈ N, we have Ul(H) ⊂ (U1(H))l. Since we always have (U1(H))l ⊂ Ul(H), the
assertion follows.
(c)⇒ (b). Let l ∈ N≥2 and let ε ∈ Ul(H). By assumption, there are ε1, . . . , εl ∈
U1(H) such that (p1ε1) · . . . · (p1εl) = pl1ε, and therefore pl1ε /∈ A(H); thus
vp1(A(H)) = {1}.
Now we prove the additional statement. A(H) = {p1ε | ε ∈ U1(H)} has already
been shown and (U1(H))k = Uk(H) = Ĥ× is obvious. The last statement fol-
lows immediately by considering the definition of a monoid of type (1, k); see
Definition 3.1.2.

2. Let H ⊂ [p1] × Ĥ× = Ĥ be a half-factorial monoid of type (1, k) and let
a1, . . . , ak+1, b ∈ A(H). By part 1, we have A(H) = {p1ε | ε ∈ U1(H)}. Then
there are ε1, . . . , εk+1, η ∈ U1(H) such that ai = p1εi for i ∈ [1, k + 1] and b = p1η.
Now we find

a1 · . . . · ak+1 = (p1ε1) · . . . · (p1εk+1) = (p1η)(pk1η−1ε1 · . . . · εk+1).

By part 1, (U1(H))k = Ĥ×, and thus there are η1, . . . , ηk ∈ U1(H) such that
η−1ε1 · . . . · εk+1 = η1 · . . . · ηk. Now we finish the proof by setting bi = p1ηi for
i ∈ [1, k]. �

The result of Lemma 3.1.3.2 is sharp as the following example shows.

Example 3.1.4. Let H ⊂ Ĥ = [p]× Ĥ× be a half-factorial reduced finitely primary
monoid of rank 1 and exponent k − 1, with k ≥ 2, such that Ĥ× = C2

k = 〈e1〉 × 〈e2〉 and
U1(H) = {1, e1, e2}.
Then c(H) = k.

Proof. By Lemma 3.1.3.2 we find c(H) ≤ k; thus the assertion follows from the
equations

(pe1)k = (pe2)k = pk and ek1 = ek2 = 1 and ord(e1) = ord(e2) = k,

since one cannot construct any shorter steps in between because of the minimality of the
order of e1 respectively e2. �
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3.1.2. Locally half-factorial orders.

Definition 3.1.5 (cf. [14, Definition 3.6.3]). Let D be an atomic monoid.
1. If H ⊂ D is an atomic submonoid, then we define

ρ(H,D) = sup
{min LH(a)

min LD(a)

∣∣∣∣ a ∈ H \D×} ∈ R≥0 ∪ {∞}.

2. Let H ⊂ D be a submonoid and G0 = {[u]D/H |u ∈ A(D)} ⊂ q(D/H). We say
that H ⊂ D is faithfully saturated if H is atomic, H ⊂ D is saturated and cofinal,
ρ(H,D) <∞, and D(G0) <∞.

Lemma 3.1.6. Let D be a half-factorial monoid and H ⊂ D an atomic saturated
submonoid.
Then ρ(H,D) ≤ 1.

Proof. Let ε ∈ D× ∩H. Then ε | 1 in D, and thus ε | 1 in H, and therefore ε ∈ H×.
Now we find ρ(H,D) ≤ ρ(D) = 1, by [14, Proposition 3.6.6]. �

Lemma 3.1.7. Let D be a monoid, P ⊂ D a set of prime elements, r ∈ N, and let
Di ⊂ D̂i = [pi]×D̂×i be reduced finitely primary monoids such that D = F(P )×D1×. . .×Dr.
Let H ⊂ D be a saturated submonoid, G = q(D/H) its class group, and let G be finite.
Then

1. D is a reduced BF-monoid.
2. H ⊂ D is a faithfully saturated submonoid and H is also a reduced BF-monoid.

Proof.
1. Since D is the direct product of reduced BF-monoids, D is a reduced BF-monoid.
2. Since, by part 1, D is a reduced BF-monoid, H is a reduced BF-monoid by [14,

Proposition 3.4.5.5]. Since G and r are finite, H ⊂ D is faithfully saturated by [14,
Theorem 3.6.7]. �

The following lemma offers a refinement of [14, Theorem 3.6.4] for faithfully saturated
submonoids H ⊂ D such that ρ(H,D) = 1.

Lemma 3.1.8. Let D be a reduced atomic half-factorial monoid, H ⊂ D a faithfully
saturated submonoid with ρ(H,D) = 1, G = q(D/H) its class group, let D = D(G) be its
Davenport constant, and let each class in G contain some u ∈ A(D).
Then

c(H) ≤ max
{⌊(D + 1)

2 c(D)
⌋
,D2

}
.

Proof. We start by developing the same machinery to compare the factorizations
in H with those in D as in [14, Proof of Theorem 3.6.4]. Let πH : Z(H) → H and
πD : Z(D) → D be the factorization homomorphisms and let Y = π−1

D (H) ⊂ Z(D). Let
f : Z(D) → D/H be defined by f(z) = [πD(z)]D/H . Then f is an epimorphism and
Y = f−1(0). Now [14, Proposition 2.5.1] implies that Y ⊂ Z(D) is saturated, that Y is a
Krull monoid, and that f induces an isomorphism f∗ : Z(D)/Y → D/H, since Y ⊂ Z(D)
is cofinal. By [14, Theorem 3.4.10.5], we have c(Y ) ≤ D, and by [14, Proposition 3.4.5.3]
it follows that |v| ≤ D for all v ∈ A(Y ). If v ∈ Y , then there exists a factorization
y ∈ ZH(πD(v)) such that |y| ≤ |v|.
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If z̃ ∈ Y and z ∈ Z(H), then we say that z is induced by z̃ if z = z1 · . . . · zm and
z̃ = z̃1 · . . . · z̃m, where z̃j ∈ A(Y ) ⊂ Z(D), zj ∈ ZH(πD(z̃j)) and |zj | ≤ |z̃j | for all j ∈ [1,m].
If z is induced by z̃, then πH(z) = πD(z̃) and |z| ≤ |z̃|. By definition, every factorization
z̃ ∈ Y induces some factorization z ∈ Z(H). Also, if z is induced by z̃ and z′ is induced by
z̃′, then zz′ is induced by z̃z̃′.
If x = u1 · . . . ·um ∈ Z(H), where uj ∈ A(H) and ũj ∈ ZD(uj), then ũj ∈ A(Y ) and |ũj | ≤ D
for all j ∈ [1,m] by [14, Proposition 3.4.5.3]. Hence x is induced by x̃ = ũ1 · . . . · ũm, and
|x̃| ≤ D|x|.
We prove the following assertions:

A0 Let z̃ ∈ Y with z̃ = a1 · . . . · amb1 · . . . · bn, where a1, . . . , am, b1, . . . , bn ∈ A(H),
[a1]D/H = . . . = [am]D/H = 0D/H , and [b1]D/H , . . . , [bn]D/H 6= 0D/H . For any
z ∈ Z(H) such that z is induced by z̃, we have |z| = m+

⌊
n
2
⌋
.

A1 For any z̃, z̃′ ∈ Y , there exist z, z′ ∈ Z(H) such that z is induced by z̃, z′ is induced
by z̃′, and d(z, z′) ≤

⌊
D+1

2 d(z̃, z̃′)
⌋
.

A2 If a ∈ H, z̃ ∈ Y , and z, z′ ∈ ZH(a) are both induced by z̃, then there exists a
D2-chain of factorizations in ZH(a) concatenating z and z′.

Proof of A0. Let z̃ ∈ Y with z̃ = a1 ·. . .·amb1 ·. . .·bn, where a1, . . . , am, b1, . . . , bn ∈
A(H), [a1]D/H = . . . = [am]D/H = 0, and [b1]D/H = . . . = [bn]D/H 6= 0D/H . Let
now z ∈ Z(H) be induced by z̃. We have ai ∈ A(H) for all i ∈ [1,m] and—after
renumbering if necessary—b1 · . . . · bj1 , bj1+1 · . . . · bj2 , . . . , bjk−1+1 · . . . · bjk ∈ A(H) for
some k ∈ N and 1 < j1 + 1 < j2 < j2 + 1 < . . . < jk−1 + 1 < jk < n such that
a1 · . . . · am(b1 · . . . · bj1)(bj1+1 · . . . · bj2) · . . . · (bjk−1+1 · . . . · bjk) = z. Then we have
|z| = m+

⌊
n
2
⌋
. �

Proof of A1. Suppose that z̃, z̃′ ∈ Y , w̃ = gcd(z̃, z̃′) ∈ Z(D), z̃ = w̃ỹ, and z̃′ = w̃ỹ′,
where ỹ, ỹ′ ∈ Z(D). By [14, Proposition 3.4.5.6], there exists some w̃0 ∈ Z(D) such that
w̃0 | w̃, w̃0ỹ ∈ Y , and |w̃0| ≤ (D− 1)|ỹ|. We may assume that there is no a ∈ A(D) with
a | w̃0 and [a]D/H = 0. We set w̃1 = w̃−1

0 w̃. Since z̃ = w̃1(w̃0ỹ) ∈ Y and w̃0ỹ ∈ Y , we
obtain w̃1 ∈ Y , and since z̃′ = w̃1(w̃0ỹ

′) ∈ Y it follows that w̃0ỹ
′ ∈ Y . Let v, u, u′ ∈ Z(H)

be such that v is induced by w̃−1
0 w̃, u is induced by w̃0ỹ and u′ is induced by w̃0ỹ

′. Then
z = uv is induced by w̃ỹ = z̃, z′ = u′v is induced by w̃ỹ′ = z̃′, and, by part A1,

d(z, z′) ≤ max{|u|, |u′|} ≤ max{|ỹ|, |ỹ′|}+
⌊ |w̃0|

2

⌋
≤
⌊D + 1

2 d(z̃, z̃′)
⌋
. �

Proof of A2. For every ṽ ∈ A(Y ), we fix a factorization ṽ∗ ∈ Z(H) which is induced
by ṽ, and, for ȳ = ṽ1 · . . . · ṽs ∈ Z(Y ), we set ȳ∗ = ṽ∗1 · . . . · ṽ∗s ∈ Z(H). Then ȳ∗ is induced by
πY (ȳ), |ȳ∗| ≤ |πY (ȳ)| ≤ D|ȳ|, and if ȳ1, ȳ2 ∈ Z(Y ), then d(ȳ∗1, ȳ∗2) ≤

⌊
D+1

2 d(ȳ1, ȳ2)
⌋

by A1.
Let now z, z′ ∈ ZH(a) be both induced by z̃. Then z̃ = ṽ1 ·. . .·ṽr = ṽ′1 ·. . .·ṽ′r′ , z = v1 ·. . .·vr,
and z′ = v′1 · . . . ·v′r′ , where ṽi, ṽ′i ∈ A(Y ), vi is induced by ṽi, and v′i is induced by ṽ′i. Since
ȳ = ṽ1 · . . . · ṽr ∈ ZY (z̃), ȳ′ = ṽ′1 · . . . · ṽ′r′ ∈ ZY (z̃), and c(Y ) ≤ D, there exists a D-chain
ȳ = ȳ0, ȳ1, . . . , ȳl = ȳ′ in ZY (z̃) concatenating ȳ and ȳ′ in ZY (z̃). Then ȳ∗0, ȳ

∗
1, . . . , ȳ

∗
l is

a D-chain in ZH(a) concatenating ȳ∗ and ȳ′∗. We have ȳ∗0 = ṽ∗1 · . . . · ṽ∗r , z = v1 · . . . · vr,
and since both vi and v∗i are induced by ṽi, it follows that max{|vi|, |v∗i |} ≤ |ṽi| ≤ D. For
i ∈ [0, r], we set zi = ṽ∗1 · . . . · ṽ∗i vi+1 · . . . · vr ∈ ZH(a). Then z = z0, z1, . . . , zr = ȳ∗ is a
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D2-chain concatenating z and ȳ∗. In the same way, we get a D-chain concatenating ȳ′∗ and
z′. Connecting these three chains, we get a D2-chain in ZH(a) concatenating z and z′. �

Suppose that a ∈ H and z, z′ ∈ ZH(a). Let z̃, z̃′ ∈ Y be such that z is induced by z̃

and z′ is induced by z̃′. Then z̃, z̃′ ∈ ZD(a), and therefore there exists a c(D)-chain
z̃ = z̃0, z̃1, . . . , z̃l = z̃′l in ZD(a). For i ∈ [0, l − 1], A1 gives the existence of factorizations
z′i, z

′′
i ∈ ZH(a) such that z′i is induced by z̃i, z′′i is induced by z̃i+1, and d(z′i, z′′i ) ≤⌊

D+1
2 c(D)

⌋
. By A2, there exist D2-chains of factorizations in ZH(a) concatenating z and

z′0, z′′i and z′i+1 for all i ∈ [0, l− 1], and zl−1 and z′. Connecting all these chains, we obtain
a max

{⌊
(D+1)

2 c(D)
⌋
,D2

}
-chain concatenating z and z′. �

Lemma 3.1.9. Let D be a monoid, P ⊂ D a set of prime elements, r ∈ N, and let
Di ⊂ D̂i = [pi]× D̂×i be reduced half-factorial but not factorial monoids of type (1, ki) with
ki ∈ {1, 2} for i ∈ [1, r] such that D = F(P )×D1 × . . .×Dr. Let H ⊂ D be a saturated
submonoid, G = q(D/H) its class group, and let G be finite such that each class in G

contain some p ∈ P .
Then

1. 2 ≤ c(D) = max{c(D1), . . . , c(Dr)} ≤ max{k1, . . . , kr} + 1 ≤ 3 and D is half-
factorial.
In particular, c(D) = 2 and t(D) = 2, if k1 = . . . = kr = 1.

2. If #G = 1, then c(H) = c(D), t(H) = t(D), and H is half-factorial.
3. If #G ≥ 3, then (D(G))2 ≥ c(H) ≥ 3 and min4(H) = 1.
4. If #G = 2, then c(H) ≤ 4 and ρ(H) ≤ 2.

Proof.

1. By Lemma 3.1.7.1, D is atomic. Trivially, we have c(F(P )) = 0. By Lemma 3.1.3.2
and the fact that Di is not factorial, we find 2 ≤ c(Di) ≤ ki + 1 ≤ 3 for all i ∈ [1, r].
By Lemma 1.2.18.3, we find

c(D) = max{c(F(P )), c(D1), . . . , c(Dr)}

= max{c(D1), . . . , c(Dr)}

= max{k1, . . . , kr}+ 1 ≤ 3.

Thus the first part of the assertion follows. Since D is the direct product of
half-factorial monoids, D is half-factorial by Lemma 1.2.18.4. We have t(Di) = 2 if
ki = 1 for all i ∈ [1, r] by Lemma 3.1.3.2. Now t(D) = 2 follows by Lemma 1.2.18.6.

2. Here we have H = D and thus the assertion follows from part 1.

Before the proof of the two remaining parts we make the following observations. By
Lemma 3.1.7.2, H is atomic, H ⊂ D is a faithfully saturated submonoid, and, by
Lemma 3.1.6, we have ρ(H,D) ≤ 1.

3. By part 1, we have c(D) ≤ 3, by Lemma 1.2.17.1, we have min4(H) = 1, and, by
[14, Lemma 1.4.9.2], we have D(G) ≥ 3. Using [14, Theorem 3.6.4.1], we find

3 ≤ D(G) ≤ c(H) ≤ ρ(H,D) max{c(D),D(G)}D(G) = (D(G))2.

4. Since #G = 2, we have D(G) = 2, and since D1 × . . . × Dr is half-factorial, i.e.
ρ(D1 × . . . × Dr) = 1, we find ρ(H) ≤ 2 by Lemma 1.2.17.2. When we apply
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Lemma 3.1.8, we find

c(H) ≤ max
{⌊

(D(G) + 1)c(D)
2

⌋
,D(G)2

}
≤
{⌊9

2

⌋
, 4
}

= 4. �

Definition 3.1.10. Let D be a monoid, P ⊂ D a set of prime elements, and T ⊂ D
a submonoid such that D = F(P ) × T . Let H ⊂ D be a saturated submonoid, G =
q(D/H) = q(D)/q(H) its class group, G0 = {[p]D/H | p ∈ P} ⊂ G the set of all classes in
G containing some p ∈ P , and let B(G0, T, ι) be the T -block monoid over G0 defined by
the homomorphism ι : T → G, ι(t) = [t]D/H .
For a subset S ⊂ B(G0, T, ι) and an element g ∈ G0, we set Sg = S ∩ ι−1({g}).

Lemma 3.1.11. Let D be a monoid, P ⊂ D a set of prime elements, r ∈ N, and let
Di ⊂ D̂i = [pi]× D̂i

× be reduced half-factorial monoids of type (1, ki) with ki ∈ {1, 2} for
all i ∈ [1, r] such that D = F(P )×D1 × . . .×Dr. Let H ⊂ D be a saturated submonoid,
G = q(D/H) its class group with #G = 2, say G = {0, g}, let each class in G contain
some p ∈ P , and define a homomorphism ι : D1 × . . .×Dr → G by ι(t) = [t]D/H .
Then we find the following for the atoms of the (D1× . . .×Dr)-block monoid over G defined
by ι, i.e., B(G,D1 × . . .×Dr, ι):

A(B(G,D1 × . . .×Dr, ι))

= {0, g2}

∪ {piε | i ∈ [1, r], ε ∈ U1(Di), ι(piε) = 0}

∪ {piεg | i ∈ [1, r], ε ∈ U1(Di), ι(piε) = g}

∪ {p2
i ε | i ∈ [1, r], ε ∈ (D̂i

×)0 \ (U1(Di)ι(pi))
2}

∪ {pipjεiεj | i, j ∈ [1, r], i 6= j, εi ∈ U1(Di), εj ∈ U1(Dj), ι(piεi) = ι(pjεj) = g} .

Proof. For short, we write B = B(G,D1 × . . . × Dr, ι). Since #G = 2, we have
D(G) = 2, and thus every atom of B is a product of at most two atoms of F(G)×D1×. . .×Dr.
First, we write down all atoms of F(G)×D1 × . . .×Dr, namely

A(F(G)×D1 × . . .×Dr) = {0, g} ∪
⋃

i∈[1,r]
{piε | ε ∈ U1(Di)} ,

by Lemma 3.1.3.1. Now, we find

A(F(G)×D1 × . . .×Dr) ∩ B = {0} ∪ {piε | i ∈ [1, r], ε ∈ U1(Di), ι(piε) = 0} , and

A(F(G)×D1 × . . .×Dr) \ B = {g} ∪ {piε | i ∈ [1, r], ε ∈ U1(Di), ι(piε) = g} .

By Lemma 3.1.7, D and H are reduced, and therefore εiεj /∈ B for all i, j ∈ [1, r],
i 6= j, εi ∈ U1(Di), and εj ∈ U1(Di). Thus the following products of two atoms of
F(G)×D1 × . . .×Dr are atoms of B:

A(B) ⊃{g2}

∪{piεg | i ∈ [1, r], ε ∈ U1(Di), ι(piε) = g}

∪{p2
i ε | i ∈ [1, r], ε ∈ (D̂i

×)0 \ (U1(Di)ι(pi))
2}

∪{pipjεiεj | i, j ∈ [1, r], i 6= j, εi ∈ U1(Di), εj ∈ U1(Dj), ι(piεi) = ι(pjεj) = g} .

Since we have run through all possible combinations, the assertion follows. �
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Lemma 3.1.12. Let D = F(P )×D1 × . . .×Dr be a monoid, where P ⊂ D is a set of
prime elements, r ∈ N, and, for all i ∈ [1, r], Di ⊂ [pi]× D̂i

× is a reduced half-factorial but
not factorial monoid of type (1, 1). Let H ⊂ D be a saturated submonoid, G = q(D/H) its
class group, #G = 2, and let each class in G contain some p ∈ P . Let ι : D1× . . .×Dr → G

be defined by ι(t) = [t]D/H , and denote by B(G,D1 × . . .×Dr, ι) the (D1 × . . .×Dr)-block
monoid over G defined by ι and set | · |B = | · |B(G,D1×...×Dr,ι).

1. If (x, y) ∈∼B(G,D1×...×Dr,ι) with |y|B ≥ |x|B and |y|B ≥ 5, then there is a monotone
R-chain concatenating x and y; in particular, x ≈ y, and if |x|B = |y|B, then
x ≈eq y.

2. Additionally,

cmon(B(G,D1 × . . .×Dr, ι) ≤ sup{|y|B | (x, y) ∈ A(∼B(G,D1×...×Dr,ι)), |x|B ≤ |y|B ≤ 4}.

Proof. Let #G = 2, say G = {0, g}. By Lemma 1.2.16.4, we set B(G,D1 × . . . ×
Dr, ι) = [0]× B with B = {S ∈ B(G,D1 × . . .×Dr, ι) | 0 - S}. Before we start the actual
proof, we establish some machinery to deal with factorizations in B and their lengths more
systematically.
We set D0 = F({g}), whence A(D0) = {g} and Z(D0) = D0. We define ι : D0 → G

by ι(gk) = kg for all k ∈ Z. For i ∈ [0, r], let πi : Z(Di) → Di be the factorization
homomorphism. We set D′ = D0 × . . .×Dr and obtain A(D′) = A(D0) ∪ . . . ∪ A(Dr). If
a = a0 · . . . ·ar ∈ D′, where ai ∈ Di for all i ∈ [0, r], then we set ι(a) = ι(a0)+ι(a1 · . . . ·ar) =
ι(a0)+ . . .+ι(ar). Then ι : D′ → G is a homomorphism and B = ι−1(0) ⊂ D′ is a saturated
submonoid, whose atoms are given by the following assertion A1.

A1 An element x ∈ D0 × · . . . · ×Dr is an atom of B if and only if it is of one of the
following forms:

– x = a ∈ A(Di) for some i ∈ [1, r] and ι(a) = 0.
– x = a1a2, where a1 ∈ A(Di), a2 ∈ A(Dj), for some i, j ∈ [0, r], i 6= j, and
ι(a1) = ι(a2) = g.

– x = a1a2, where a1, a2 ∈ A(Di) for some i ∈ [0, r] such that ι(v) = g for all
v ∈ A(Di).

We will call the atoms of the third form pure in i.

Proof of A1. By the listing of all atoms of B(G,D1×. . .×Dr, ι) in Lemma 3.1.11 and
the fact that A(B) = A(B(G,D1× . . .×Dr, ι))\{0}, we must only show the last statement
in the case i ∈ [1, r]. Suppose there are a1, a2 ∈ A(Di) such that a = a1a2 ∈ A(B). Then,
obviously, ι(a1) = ι(a2) = g. Now we assume, there is some v ∈ A(Di) with ι(v) = 0.
By Lemma 3.1.3.2, there is v′ ∈ A(Di) such that a1a2 = vv′, and then ι(v′) = 0, a
contradiction. �

Let F = Z(D′) = Z(D0) × . . . × Z(Dr) = F(A(D′)) be the factorization monoid of D′.
Then π = π0 × . . . × πr : F → D′ is the factorization homomorphism of D′. We denote
by | · | = | · |F the length function in the free monoid F , and for x, y ∈ F we write x | y
instead of x |F y. For a ∈ A(B), let θ0(a) ∈ π−1(a) ⊂ Z(D′) be a factorization of a in
D′. If a ∈ A(D′), then θ0(a) = a; otherwise θ0(a) = a1a2 ∈ F for some a1, a2 ∈ A(D′)
such that a = a1a2 in D′. By A1, #π−1(a) = 1 unless a is pure in i for some i ∈ [1, r].
Let θ : Z(B)→ F be the unique monoid homomorphism satisfying θ|A(B) = θ0. Then θ
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induces the following commutative diagram

Z(B)

πB

��

θ // F = Z(D′)

πD′

��
B �
� // D′,

where πB denotes the factorization homomorphism of B and the bottom arrow denotes the
inclusion. For x ∈ Z(B), we set |x| = |θ(x)|. For x ∈ Z(B), we define its components xi ∈
Z(Di) for i ∈ [0, r] by θ(x) = x0·. . .·xr. Then π◦θ(x) ∈ B implies ι◦π0(x0)+. . .+ι◦πr(xr) =
0. For i ∈ [0, r], we set xi = ui,1 · . . . ·ui,ki

vi,1 · . . . · vi,li , where ui,j , vi,j ∈ A(Di), ι(ui,j) = 0,
and ι(vi,j) = g. We define x′i, x′′i ∈ Z(Di) by x′i = ui,1 · . . . · ui,ki

and x′′i = vi,1 · . . . · vi,li ,
whence xi = x′ix

′′
i . In particular, |x′0| = 0, x0 = x′′0, and ι ◦ πi(xi) = lig = |x′′i |g. Therefore

we obtain |x′′0| + . . . + |x′′r | ≡ 0 mod 2. If i ∈ [1, r] and a ∈ Di is such that a | x′i, then
a |B x. In Z(B), there is a factorization x = u1 · . . . · umv1 · . . . · vn, where uj , vj ∈ A(B),
|uj | = 1 for all j ∈ [1,m], |vj | = 2 for all j ∈ [1, n], and we obtain

m =
r∑
i=1
|x′i|, n = 1

2

r∑
i=0
|x′′i |, and |x|B = m+ n = 1

2

r∑
i=0

(|xi|+ |x′i|) ≤
r∑
i=0
|xi|.

Assume now that x = x0 · . . . · xr, y = y0 · . . . · yr ∈ Z(B) are as above, and suppose that
(x, y) ∈∼B. Then x0 = y0, |xi| = |yi| (since each Di is half-factorial), πi(xi) = πi(yi) ∈ Di,
thus ι ◦ πi(xi) = ι ◦ πi(yi) ∈ G, and therefore |x′′i | ≡ |y′′i | mod 2 and |x′i| ≡ |y′i| mod 2 for
all i ∈ [1, r]. Consequently, it follows that the following are all equivalent:

• |x|B ≤ |y|B
•
∑r
i=1 |x′i| ≤

∑r
i=1 |y′i|

•
∑r
i=1 |x′′i | ≥

∑r
i=1 |y′′i |

Additionally, we find

2|x|B =
r∑
i=0

(|xi|+ |x′i|) ≥
r∑
i=0

(|yi|) ≥ |y|B,

and thus |y|B ≥ 5 implies |x|B ≥ 3.
Before we start with the actual proof of part 1 of Lemma 3.1.12, we prove the following
reduction step.

A2 In the proof of part 1 of Lemma 3.1.12, we may assume that |xi| = |yi| ≥ 2 for all
i ∈ [1, r].

Proof of A2. If i ∈ [1, r], then |xi| = 0 if and only if |yi| = 0, and in this case we
may neglect this component. If |xi| = 0 for all i ∈ [1, r], then there is nothing to do. If
i ∈ [1, r], then |xi| = 1 if and only if |yi| = 1, and then xi = yi ∈ A(Di). Suppose that
i ∈ [1, r] and |xi| = 1. If ι(xi) = 0, then xi ∈ A(B) and xi is a greatest common divisor of
x and y in Z(B), hence (x, y) is a monotone R-chain concatenating x and y. If ι(xi) = g,
then we set x̃ = gx−1

i x, ỹ = gy−1
i y, and then (x̃, ỹ) ∈∼B, |x̃i| = |ỹi| = 0, and whenever

there is a monotone R-chain concatenating x̃ and ỹ, then there is a monotone R-chain
concatenating x and y. �

Now we are ready to do the actual proof of the lemma. Suppose that (x, y) ∈∼B with
|y|B ≥ 5, |y|B ≥ |x|B, x = x0 · . . . · xr, y = y0 · . . . · yr, xi = x′ix

′′
i , yi = y′iy

′′
i as above, and

|xi| = |yi| ≥ 2 for all i ∈ [0, r]. We shall use A1 and Lemma 3.1.3.2 again and again
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without mentioning this explicitly. Of course, we may assume that there is no a ∈ A(B)
such that a |B x and a |B y, since then there is, trivially, a monotone R-chain concatenating
x and y. For now assume |x|B ≥ 4; the remaining case, where |x|B = 3, will be studied at
the end of the proof after Case 3.
Case 1. There is some i ∈ [1, r] such that |x′i| ≥ 1 and |y′i| ≥ 1.

Case 1.1. There is some i ∈ [1, r] such that |xi|′ ≥ 2 and |y′i| ≥ 1.
Let a1, a2, b ∈ A(Di) be such that a1a2 | x′i and b | y′i. Then there is some b′ ∈ A(Di) such
that a1a2 = bb′. Then ι(b′) = 0, and if x∗ ∈ Z(B) is such that x = a1a2x

∗, then x, bb′x∗, y
is a monotone R-chain concatenating x and y.

Case 1.2. There is some i ∈ [1, r] such that |x′i| = 1 and |y′i| ≥ 1.
Then x′i ∈ A(B). Let a, b ∈ A(Di) be such that a | x′′i and b | y′i. Let u ∈ A(F ) be such
that au ∈ A(B) and au |B x. Since x′i ∈ A(Di), we obtain u /∈ A(Di). Let b′ ∈ A(Di) be
such that x′ia = bb′, whence ι(b′) = g and b′u ∈ A(B). If x = x′i(au)x∗, where x∗ ∈ Z(B),
then |x∗|B ≥ 1, and x, b(b′u)x∗, y is a monotone R-chain concatenting x and y.
Reduction 1. By Case 1, we may now assume that, for all i ∈ [1, r], either |x′i| = 0 or
|y′i| = 0. In particular, if |x′i| ≥ 1, then |y′i| = 0, and therefore |x′i| ≥ 2, since |x′i| ≡ |y′i|
mod 2. Similarly, if |y′i| ≥ 1, then |y′i| ≥ 2.
Case 2. There is some i ∈ [1, r] such that |y′i| ≥ 1.
In this case, |x′i| = 0 by Reduction 1, hence |y′i| ≥ 2 and |x′′i | ≥ 2. Let b ∈ A(Di) be such
that b | y′i. Now we must distinguish a few more cases based on |x|B and |y|B.

Case 2.1. |x|B = |y|B.
Note that in this case |x|B = |y|B ≥ 5. We assert that there is some j ∈ [1, r] \ {i} such
that |y′j | < |x′j |. Indeed, if |y′j | ≥ |x′j | for all j ∈ [1, r] \ {i}, then

r∑
ν=1
|x′ν | ≤

r∑
ν=1
ν 6=i

|y′ν | <
r∑

ν=1
|y′ν |,

and therefore |x|B < |y|B, a contradiction. By Reduction 1, we obtain |y′j | = 0, hence
|y′′j | ≥ 2, and |x′j | ≥ 2. We write x in the form

x = (a1u1) · . . . · (akuk)(ak+1u
∗
1) · . . . · (ak+tu

∗
t )(e1uk+1) · . . . · (esuk+s)x̃,

where k, s, t ∈ N0, x′′i = a1 · . . . · ak+t, x′′j = u1 · . . . · uk+s, u∗1, . . . , u∗t , e1, . . . , es ∈
A(F ) \ (A(Di) ∪ A(Dj)), k + t ≥ 2, and

x̃ = (e1 · . . . · es)−1
r∏

ν=1
ν 6=i

x′ν

r∏
ν=1
ν 6=i,j

x′′ν ∈ Z(B).

Let c1, c2, d1 ∈ A(Dj) be such that c1c2 | x′j , d1 | y′′j , and choose d2 ∈ A(Dj) such that
c1c2 = d1d2, whence ι(d2) = g.

Case 2.1a. t ≥ 2.
Choose som b′ ∈ A(Di) such that ak+1ak+2 = bb′. Then ι(b′) = 0, d1u

∗
1, d2u

∗
2 ∈

A(B), and we set x = (ak+1u
∗
1)(ak+2u

∗
2)c1c2x

∗, where x∗ ∈ Z(B) and |x∗|B ≥ 1. Now
x, bb′(d1u

∗
1)(d2u

∗
2)x∗, y is a monotone R-chain concatenating x and y.

Case 2.1b. t = 1.
Note that |x′′i | = k+1 ≥ 2 implies k ≥ 1. Assume first that there is some v ∈ A(B) such that
|v| = 2 and v | x̃, say v = v′v′′, where v′, v′′ ∈ A(F )\(A(Di)∪A(Dj)) and ι(v′) = ι(v′′) = g.
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Then it follows that a1v
′, u1v

′′ ∈ A(B), and we set x = (a1u1)(ak+1v1)(v′v′′)x∗, where
x∗ ∈ Z(B) and |x∗|B ≥ 1. We set x′ = (a1v

′)(ak+1v1)(u1v
′′)x∗, then x′ ∈ Z(B), (x, x′) ∈∼B,

and x ≈eq x
′. Hence, (x′, y) ∈∼B, x′ ≈eq y by Case 2.1a, and therefore x ≈eq y.

Now we set u∗1 = u, and we let m ∈ [0, r] \ {i, j} be such that u ∈ A(Dm). We write x in
the form

x = (a1u1) · . . . · (akuk)(ak+1u)(e1uk+1) · . . . · (esuk+s)
r∏

ν=1
ν 6=i

x′ν , where s+ 1 =
r∑

ν=0
ν 6=i,j

|x′′ν |.

We may assume that |x′n| = 0 for all n ∈ [1, r] \ {m, j}. Indeed, let n ∈ [1, r] \ {m, j}
be such that |x′n| ≥ 1. Then |x′n| ≥ 2, |y′n| = 0, and |y′′n| ≥ 2. Let v1, v2, w1 ∈ A(Dn)
be such that v1v2 | x′n and w1 | y′′n, and choose b1 ∈ A(Di) and w2 ∈ A(Dn) such that
a1ak+1 = bb1 and v1v2 = w1w2. Then ι(b1) = 0, ι(w2) = g, u1w1, uw2 ∈ A(B), and if
x = (a1u1)(ak+1u)v1v2x

∗, where x∗ ∈ Z(B), then |x∗|B ≥ 1, and x, bb1(u1w1)(uw2)x∗, y is
a monotone R-chain concatenating x and y.
Thus suppose that |x′n| = 0 for all n ∈ [1, r] \ {m, j}, and consequently

x = (a1u1) · . . . · (akuk)(ak+1u)(e1uk+1) · . . . · (esuk+s)x′jx′m.

We assert that there exist v1, v2, v3 ∈ A(Dm) and w1, w2, w3 ∈ A(Dj) such that v1v2v3 |
ym, w1w2w3 | yj , ι(vν) = ι(wν) = g, vνwν ∈ A(B) and vνwν |B y for all ν ∈ [1, 3]. Indeed,
observe that

|y′′i | = |yi| − |y′i| ≤ |yi| − 2 = |xi| − 2 = |x′′i | − 2 = k − 1,

|y′′j | = |yj | = |x′j |+ |x′′j | ≥ 2 + |x′′j | = k + s+ 2,

and set y′′j = yj,1 · . . . · yj,µ, where µ = |y′′j |, and, for all α ∈ [1, µ], yj,α ∈ A(Dj) and
ι(yj,α) = g. For α ∈ [1, µ], let uj,α ∈ A(F ) be such that yj,αuj,α ∈ A(B) and yj,αuj,α |B y.
Since |x′j | ≥ 1, it follows that uj,α /∈ A(Dj) for all α ∈ [1, µ]. For ν ∈ [0, r] \ {j}, we set
Nν = |{α ∈ [1, µ] | yν,α ∈ A(Dν}|, and we obtain

µ =
r∑

ν=0
ν 6=j

Nν = Nm +Ni +
r∑

ν=0
ν 6=i,j,m

Nν ≤ Nm + |y′′i |+
r∑

ν=0
ν 6=i,j,m

|yν |.

Since |yν | = |xν | = |x′′ν | for all ν ∈ [0, r] \ {i, j,m} and |x′′m| ≥ 1, it follows that

k+ s+ 2 ≤ µ ≤ Nm + k− 1 +
r∑

ν=0
ν 6=i,j,m

|x′′ν | ≤ Nm + k− 1 +
r∑

ν=0
ν 6=i,j

|x′′ν | − |x′′m| = Nm + k+ s− 1

and therefore Nm ≥ 3, which implies the existence of v1, v2, v3 and w1, w2, w3 as asserted.
In particular, it follows that |xm| = |ym| ≥ |y′′m| ≥ 3 and |xj | = |yj | ≥ |y′′j | ≥ 3. Let
u′1 ∈ A(Dj) be such that u1uk+1 = u′1w1. Then ι(u′1) = g and a1u

′
1 ∈ A(B).

Case 2.1b′. s ≥ 1.
We assume first that |x′m| ≥ 1. Let u′ ∈ A(Dm) be such that u′ | x′m. Then there exists
some v ∈ A(Dm) such that uu′ = v1v, hence ι(v) = 0, and x = (a1u1)(ak+1u)(e1uk+1)u′x∗,
where x∗ ∈ Z(B) and |x∗|B ≥ 1. Since a1u

′
1 ∈ A(B) and ak+1e1 ∈ A(B), we conclude that

x, (a1u
′
1)(ak+1e1)(v1w1)vx∗, y is a monotone R-chain concatenating x and y.

Assume now that |x′m| = 0. Then |x′′m| = |xm| ≥ 3, and (after renumbering if necessary)
we may assume that e1 ∈ A(Dm). Let v ∈ A(Dm) be such that ue1 = v1v. Then ι(v) = g,
ak+1v ∈ A(B) and x = (a1u1)(ak+1u)(e1uk+1)x∗, where x∗ ∈ Z(B) and |x∗|B ≥ 1. Hence
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x, (a1u
′
1)(ak+1v)(v1w1)x∗, y is a monotone R-chain concatenating x and y.

Case 2.1b′′. s = 0.
We assert that k ≥ 2. Indeed, assume to the contrary that k = 1. Then xi = x′′i = a1a2,
x′′j = u1, u′′m = u, 3 ≤ |xj | = 1 + |x′j |, 3 ≤ |xm| = 1 + |x′m|, hence |x′j | ≥ 2, |x′m| ≥ 2, and
therefore |y′j | = |y′m| = 0. Hence

r∑
ν=1
|y′ν | = |y′i| ≤ |yi| = 2 and

r∑
ν=1
|x′ν | = |x′j |+ |x′m| ≥ 4,

a contradiction to |x|B = |y|B.
As k ≥ 2, it follows that u2 ∈ A(Dj), hence u2v1 ∈ A(B), and we choose b2 ∈ A(Di) be
such that a1a2 = bb2, whence ι(b2) = 0. Since 3 ≤ |xm| = 1 + |x′m|, we get |x′m| ≥ 2, and
there exist v′1, v′2 ∈ A(Dm) such that v′1v′2 | x′m. Let v ∈ A(Dm) be such that v′1v′2 = v1v.
Then ι(v) = g and u1v ∈ A(B).
Assume first that k ≥ 2, and set x = (a1u1)(a2u2)v′1v′2x∗, where x∗ ∈ A(B) and |x∗|B ≥ 1.
Then u2v1 ∈ A(B), and therefore x, bb2(u1v)(u2v1)x∗, y is a monotone R-chain concate-
nating x and y.

Case 2.1c. t = 0.
Observe that |x′′i | = k ≥ 2 and x = (a1u1) · . . . · (akuk)(e1uk+1) · . . . · (esuk+s) x̃. We may as-
sume that there is no v ∈ A(B) such that |v| = 2 and v | x̃. Indeed, suppose that v ∈ A(B)
is such that |v| = 2 and v | x̃. Then v = v′v′′, where v′, v′′ ∈ A(F ) \ (A(Di) ∪ A(Dj)),
ι(v′) = ι(v′′) = g, and a2v

′, u2v
′′ ∈ A(B). We set x = (a1u1)(a2u2)(v′v′′)x∗, where

x∗ ∈ Z(B), and x′ = (a1u1)(a2v
′)(u2v

′′)x∗. Then it follows that x′ ∈ Z(B), (x, x′) ∈∼B
and x ≈eq x

′. Hence (x′, y) ∈∼B, x′ ≈eq y by Case 2.1b, and therefore x ≈eq y.
Next we prove that there is some n ∈ [1, r] \ {j} such that |x′n| ≥ 1. Assume the con-
trary. Then x = (a1u1) · . . . · (akuk)(e1uk+1) · . . . · (esuk+s)x′j , xi = x′′i = a1 · . . . · ak,
x′′j = u1 · . . . · uk+s, and

e1 · . . . · es =
r∏

ν=0
ν 6=i,j

xν .

Moreover, we obtain |y′′i | = |yi| − |y′i| ≤ |xi| − 2 = |x′′i | − 2 = k − 2 and |y′′j | = |yj | =
|x′j |+ |x′′j | ≥ 2 + k + s. We set y′′j = yj,1 · . . . · yj,µ, where µ = |y′′j |, and, for all α ∈ [1, µ],
yj,α ∈ A(Dj) and ι(yj,α) = g. For α ∈ [1, µ], let uj,α ∈ A(F ) be such that yj,αuj,α ∈ A(B)
and yj,αuj,α |B y. Since |x′j | ≥ 1, it follows that uj,α /∈ A(Dj) for all α ∈ [1, µ]. For
ν ∈ [0, r] \ {j}, we set Nν = |{α ∈ [1, µ] | yν,α ∈ A(Dν}|, and we obtain

2 + k+ s ≤ µ =
r∑

ν=0
ν 6=j

Nν ≤
r∑

ν=0
ν 6=j

|y′′ν | ≤ |y′′i |+
r∑

ν=0
ν 6=i,j

|yν | = |y′′i |+
r∑

ν=0
ν 6=i,j

|xν | ≤ k− 2 + s ,

a contradiction.
Thus let now n ∈ [1, r] \ {j} be such that |x′n| ≥ 1. Then |x′n| ≥ 2, |y′n| = 0 and |y′′n| ≥ 2.
Let v1, v2, w1 ∈ A(Dn) be such that v1v2 | x′n, w1 | y′′n, and choose some x2 ∈ A(Dn)
such that v1v2 = w1w2. Then x = (a1u1)(a2u2)v1v2x

∗, where x∗ ∈ A(B) and |x∗| ≥ 1. Let
b2 ∈ A(Di) be such that a1a2 = bb2, whence ι(b2) = 0. Then x, bb2(u1w1)(u2w2)x∗, y is a
monotone R-chain concatenating x and y.

Case 2.2. |y|B ≥ |x|B + 1, and we are in the following special situation.
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S1 There exist a1, a2 ∈ A(Di) and u1, u2 ∈ A(F )\A(Di) such that a1u1, a2u2, u1u2 ∈
A(B) and (a1u1)(a2u2) |B x.

We set x = (a1u1)(a2u2)x∗, where x∗ ∈ A(B) and |x|B ≥ 1, and we let b′ ∈ A(Di) be
such that a1a2 = bb′, whence ι(b′) = 0. Then x, bb′(u1u2)x∗, y is a monotone R-chain
concatenating x and y.

Case 2.3. |y|B = |x|B + 1, and we are not in the special situation S1.
We set x′′i = a1 · . . . · ak, where a1, . . . , ak ∈ A(Di) and k ≥ 2. For ν ∈ [1, k], let uν ∈ A(F )
be such that aνuν ∈ A(B) and (a1u1) · . . . · (akuk) |B x. Since |y′i| ≥ 1 and we are not in the
special situation S1, there exists some j ∈ [1, r] \ {i} such that u1 · . . . · uk | x′′j . Suppose
that x′′j = u1 · . . . ·uk+s, where s ∈ N0, and let c1, . . . , cs ∈ A(F ) \ (A(Di)∪A(Dj)) be such
that x = (a1u1) · . . . · (akuk)(c1uk+1) · . . . · (csuk+s)x̃ for some x̃ ∈ Z(B).
We may assume that there is no v ∈ A(B) such that |v| = 2 and v | x̃. Indeed, suppose that
v ∈ A(B) is such that |v| = 2 and v | x̃. Then v = v′v′′, where v′, v′′ ∈ A(F ) \ (A(Di) ∪
A(Dj)), ι(v′) = ι(v′′) = g, and a2v

′, u2v
′′ ∈ A(B). We set x = (a1u1)(a2u2)(v′v′′)x∗, where

x∗ ∈ Z(B), and x′ = (a1u1)(a2v
′)(u2v

′′)x∗. Then it follows that x′ ∈ Z(B), (x, x′) ∈∼B and
x ≈eq x

′. Hence (x′, y) ∈∼B, by Case 2.2, there is a monotone R-chain concatenating x′

and y, and therefore there is a monotone R-chain concatenating x and y.
Hence x is of the form

x = (a1u1) · . . . · (akuk)(c1uk+1) · . . . · (csuk+s)x′1 · . . . · x′r,

and we assert that there exists some m ∈ [1, r] \ {j} such that |x′m| ≥ 2. Indeed, we assume
to the contrary that |x′m| = 0 for all m ∈ [1, r] \ {j}. Then we obtain |x| = 2(k + s) + |x′j |,
and since |y|B = |x|B + 1, it follows that

r∑
ν=0
|y′ν | =

r∑
ν=0
|x′ν |+ 2 = |x′j |+ 2.

If |y′j | ≥ 1, then we find |x′j | = 0 and |y′j | ≥ 2, and therefore

4 ≤ |y′j |+ |y′i| ≤
r∑

ν=0
|y′ν | = 2,

a contradiction. Hence it follows that |y′j | = 0, and then |y′′j | = |yj | = |xj | = k + s+ |x′j |.
Now we find

r∑
ν=0
ν 6=j

|y′′ν | ≤ |y| − |y′′j | − |y′i| ≤ |x| − (k + s+ |x′j |)− 2 = k + s− 2 ≤ |y′′j | − 2.

We set y′′j = yj1 · . . . ·yj,µ, where µ = |y′′j | and, for all α ∈ [1, µ], yj,α ∈ A(Dj) and ι(yj,α) = g.
For α ∈ [1, µ], let uj,α ∈ A(F ) be such that yj,αuj,α ∈ A(B) and yj,αuj,α |B y. For ν ∈ [0, r],
we set Nν = #{α ∈ [1, µ] | yν,α ∈ A(Dν)}, and we obtain

0 ≤
r∑

ν=0
ν 6=j

|y′′ν | ≤ |y′′j | − 2 =
r∑

ν=0
Nν − 2,

and therefore Nj ≥ 2. Hence, there exist w1, w2 ∈ A(Dj) such that ι(w1) = ι(w2) = g and
w1w2 ∈ A(B). On the other hand, u1u2 /∈ A(B), since we are not in the special situation
S1, and therefore u1u2 = u′1u

′
2, where u′1, u′2 ∈ A(Dj) and ι(u′1) = ι(u′2) = 0. Hence the

existence of w1w2 ∈ A(B) contradicts A1.
Let now m ∈ [1, r] \ {j} be such that |x′m| ≥ 2 and let b′ ∈ A(Di) be such that a1a2 = bb′.

— 49 —



3.1. HALF-FACTORIAL ORDERS IN ALGEBRAIC NUMBER FIELDS AND THEIR
LOCALIZATIONS

By Reduction 1, we obtain |y′m| = 0, hence |y′′m| ≥ 2, and there exist v′, v′′ ∈ A(Dm) such
that v′v′′ | x′m, and there exists some u′ ∈ A(Dm) such that u′ | y′′m. Let u′′ ∈ A(Dm) be
such that v′v′′ = u′u′′, whence ι(u′′) = g, and set x = (a1u1)(a2u2)v′v′′x∗, where x∗ ∈ Z(B).
If |x|B = 4, then x = (a1u1)(a2u2)v′v′′ and thus y = y′iy

′
jy
′′
m, where |y′i| = |y′j | = |y′′m| = 2,

and thus there is a pure atom in m dividing y. Since v′, v′′ ∈ A(Dm) and ι(v′) = ι(v′′) = 0,
this contradicts A1. Now we may assume |x|B ≥ 5. Then we have |x∗|B ≥ 1 and it follows
that u1u

′, u2u
′′ ∈ A(B), and x, bb′(u1u

′)(u2u
′′)x∗, y is a monotone R-chain concatenating

x and y.
Case 2.4. |y|B ≥ |x|B + 2, and we are not in the special situation S1.

Let a1, a2 ∈ A(Di) such that a1a2 | x′′i . Since |y′i| > 0, there are u1, u2 ∈ A(F ) \ A(Di)
such that a1u1, a2u2 ∈ A(B) and (a1u1)(a2u2) |B x. We set x = (a1u1)(a2u2)x∗, where
x∗ ∈ A(B) and |x∗| ≥ 1, and u1u2 = v1v2 for some v1, v2 ∈ A(Di) such that ι(v1) = ι(v2) =
0. Again we set a1a2 = bb′, where b′ ∈ A(Di) and ι(b′) = 0, and then x, bb′v1v2x

∗, y is a
monotone R-chain concatenating x and y, since |y|B ≥ |x|B + 2 = |x∗|+ 4.
Reduction 2. By Case 2, we may now assume that |y′i| = 0 for all i ∈ [1, r], and since
|x|B ≤ |y|B, this implies that |x′i| = 0 and therefore |x′′i | ≥ 2 and |y′′i | ≥ 2 for all i ∈ [1, r].
Since x′′0 = x0 = y0 = y′′0 , we have xi = x′′i for all i ∈ [0, r].
Case 3. xi = x′′i , yi = y′′i , and |xi| = |yi| ≥ 2 for all i ∈ [0, r].

Case 3a. There is some i ∈ [0, r] such that
r∑

ν=0
ν 6=i

|xν | < |xi|
[
and thus also

r∑
ν=0
ν 6=i

|yν | < |yi|
]
.

There exist a1, a2, b1, b2 ∈ A(Di) such that a1a2 ∈ A(B), b1b2 ∈ A(B), a1a2 |B x, and
b1b2 |B y. Let b ∈ A(Di) be such that a1a2 = b1b. Since 5 ≤ |x|B ≤ 2|x′′i | = 2|xi|, there
exists some aw ∈ A(Di) such that a1a2a3 | xi. Let c ∈ A(F ) be such that a3c ∈ A(B) and
a3c |B x, and let b3 ∈ A(Di) be such that ba3 = b2b3. If x = (b1b)(a3c)x∗, where x∗ ∈ A(B)
and |x∗|B ≥ 1, then x, (b1b2)(b3c)x∗, y is a monotone R-chain concatenating x and y.

Case 3b. For all i ∈ [0, r], we have
r∑

ν=0
ν 6=i

|xν | ≥ |xi|
[
and thus also

r∑
ν=0
ν 6=i

|yν | ≥ |yi|
]
.

We shall prove the following reduction step.
R1 We may assume that, for each i ∈ [0, r], there is no pure atom in i dividing either

x or y in B.

Proof of R1. Let x̃ ∈ Z(B) be such that (x, x̃) ∈∼B, x ≈eq x̃, and the number of
pure atoms dividing x̃ is minimal. Assume there is at least one pure atom in i ∈ [0, r]
dividing x̃, say a1a2 ∈ A(B) with a1, a2 ∈ A(Di) and a1a2 |B x̃. Now we find

r∑
ν=0
ν 6=i

|x̃ν | ≥ |x̃i| − 2,

and thus there are c1, c2 ∈ A(F ) \ A(Di) with c1c2 ∈ A(B) and c1c2 |B x̃. If x̃ =
(a1a2)(c1c2)x∗, where x∗ ∈ A(B) and |x∗|B ≥ 1, then we set x′ = (a1c1)(a2c2)x∗. Now we
find (x̃, x′) ∈∼B and x̃ ≈eq x

′, and thus x ≈eq x
′. Since there is one pure atom less dividing

x′ than x̃, this is a contradiction.
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The same argument applies to y. Therefore there exist x̃, ỹ ∈ Z(B) both not divisable by
any pure atom such that (x, x̃), (y, ỹ) ∈∼B, x ≈eq x̃, and y ≈eq ỹ. Hence it follows that
(x̃, ỹ) ∈∼B and if x̃ ≈eq ỹ, then x ≈eq y. �

Next we prove the following reduction step.

R2 We may assume that, for each i ∈ [0, r], xi = yi.

Proof of R2. Trivially, we have x0 = y0. Now let i ∈ [1, r]. We assert that there is
some x̃ ∈ Z(B) such that (x, x̃) ∈∼B, x ≈eq x̃, and z = gcd(x̃i, yi) (in F ) is maximal. Now
assume that x̃i = zz̃ and yi = zz̃′, where z̃, z̃′ ∈ Z(Di) and |z̃| = |z̃′| ≥ 1. If |z̃| = |z̃′| = 1,
then there are some v, v′ ∈ A(Di) such that z̃ = v and z̃′ = v′. Now we find

πi(z)v = πi(zz̃) = πi(x̃i) = πi(yi) = πi(zz̃′) = πi(z)v′,

and thus v = v′. But then gcd(x̃i, yi) = vz, a contradiction. If |z̃| = |z̃′| ≥ 2, then there are
a1, a2, b ∈ A(Di) with a1a2 | x̃i and b | yi. By R1, there are c1, c2 ∈ A(F ) \ A(Di) such
that a1c1, a2c2 ∈ A(B) and a1c1, a2c2 |B x. There is some b′ ∈ A(Di) such that a1a2 = b′b.
If x̃ = (a1c1)(a2c2)x∗, where x∗ ∈ Z(B) and |x∗|B ≥ 1, then we set x̄ = (bc1)(b′c2)x∗ and
find (x̃, x̄) ∈∼B and x̃ ≈eq x̄, and thus x ≈eq x̄. Since bz = b gcd(x̃i, yi) | gcd(x̄i, yi), this is
a contradiction. �

Now we fix—again arbitrarily—some i ∈ [0, r] and choose a ∈ A(Di) such that a | x′′i .
Then a | y′′i , too. By R1, there are c, d ∈ A(F ) \ A(Di) such that ac |B x and ad |B y.
Again by R1, there are e, f ∈ A(F ) such that de |B x and cf |B y.
Then x and y are of the following forms

x = (ac)(de)x∗ and y = (ad)(cf)y∗,

where x∗, y∗ ∈ Z(B) and |x∗|B = |y∗|B ≥ 1.
Case 3.b′. ce ∈ A(B).

Then x, (ad)(ce)x∗, y is a monotone R-chain concatenating x and y.
Case 3.b′′ df ∈ A(B).

Then x, (ac)(df)y∗, y is a monotone R-chain concatenating x and y.
Case 3.b′′′ We are neither in Case 3.b′ nor in Case 3.b′′, and thus there are j1, j2 ∈

[0, r]\{i} with j1 6= j2 such that c, e ∈ A(Dj1) and d, f ∈ A(Dj2). Then ae, af, cd ∈ A(B)
and hence x, (ae)(cd)x∗, (af)(cd)y∗, y is a monotone R-chain concatenating x and y.

Now it remains to prove the special case, where |x|B = 3. By the length formulas from
the beginning of the proof we find that |y|B ∈ {5, 6}. If |y|B = 5, then the length formulas
imply that that there is some i ∈ [1, r] such that |x′i| = 1 and |y′i| ≥ 1, and thus we are in the
situation of Case 1.2. When we inspect the monotone R-chain constructed there, we find
that the same monotone R-chain concatenating x and y exists in our situation. If |y|B = 6,
then we find that |x′i| = 0 and |y′′i | = 0 for all i ∈ [1, r]. Since 6 = |y|B ≥ |x|B + 2 = 5, we
are either in Case 2.2 or in Case 2.4. Again we inspect the monotone R-chains constructed
there, and we find that the same monotone R-chains concatenating x and y exist in our
special situation.
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Now it remains to show part 2. By Lemma 2.2.18.3, we have

cmon(B) ≤ sup{|y| | (x, y) ∈ A(∼B,mon), there is no monotone R-chain from x

to y, and either |x| = |y| or |x|, |y| ∈ L(πB(x)) are adjacent}.

By part 1, there is a monotone R-chain concatenating x and y for all (x, y) ∈∼B with
|y|B ≥ 5 and |y|B ≥ |x|B. Thus it suffices to consider relations (x, y) ∈∼B with |x|B ≤
|y|B ≤ 4. By definition we have {(x, y) ∈ A(∼B) | |x|B ≤ |y|B} ⊂ A(∼B,mon). Since
the shortest possible atom (x, y) ∈ A(∼B) \ A(∼B,mon) satisfies |x|B > |y|B ≥ 2, we find
|xy|B ≥ 5. Hence, we may restrict on elements of A(∼B) and the assertion follows. �

Using Lemma 3.1.9.4, Lemma 3.1.11, and Lemma 3.1.12 above, we can now calculate
the catenary degree and the minimum distance (with #G = 2), and in a slightly more
special but still interesting situation, we can compute the elasticity, the monotone catenary
degree and the tame degree.

Proposition 3.1.13. Let D be a monoid, P ⊂ D a set of prime elements, r ∈ N0,
s ∈ N0, r + s ≥ 1, and let Di ⊂ [pi]× D̂i

× = D̂i be reduced half-factorial but not factorial
monoids of type (1, ki) for i ∈ [1, r+s] with k1 = . . . = kr = 1 and kr+1 = . . . = ks = 2 such
that D = F(P )×D1 × . . .×Dr+s. Let H ⊂ D be a saturated submonoid, let G = q(D/H)
be its class group with #G = 2, say G = {0, g}, let each class in G contain some p ∈ P ,
and define a homomorphism ι : D1 × . . .×Dr+s → G by ι(t) = [t]D/H . Furthermore, set
I = {i ∈ [1, r + s] | (U1(Di)0)2 ∩ (U1(Di)g)2 6= ∅} and J = {i ∈ [r + 1, r + s] | c(Di) = 3}.
Then

1. If I = J = ∅, then H is half-factorial and c(H) = 2.
2. If I = ∅ and J 6= ∅, then c(H) ∈ {2, 3}, and 4(H) ⊂ {1}.
3. If #I = 1, then ρ(H) ≥ 3

2 , c(H) = 3, and 4(H) = {1}.
4. If #I ≥ 2, then ρ(H) = 2, c(H) = 4, and 4(H) = {1, 2}.
5. If s = 0, then cmon(H) = c(H). Additionally, if #I = 1, then ρ(H) = 3

2 .
6. If s = 0 and ι(pi) = 0 for all i ∈ [1, r], then H is half-factorial if and only if

t(H) = 2.

In particular, min4(H) ≤ 1 always holds.

Proof. We set B = {S ∈ B(G,D1 × . . . × Dr+s | 0 - S}. By Lemma 1.2.16, H
and D are reduced BF-monoids, and H ⊂ D is a faithfully saturated submonoid. By
Lemma 1.2.16.4, we obtain 4(H) = 4(B), ρ(H) = ρ(B), c(H) = c(B), and cmon(H) =
cmon(B). Lemma 3.1.9.1 implies c(D) ≤ 3, and, by Lemma 3.1.9.4, we obtain c(B) =
c(H) ≤ 4.
By Proposition 2.1.9.1, we obtain c(B) ≤ sup{|y|B | (x, y) ∈ A(∼B), and since c(B) ≤ 4, it
follows that

c(B) ≤ max{|y|B | (x, y) ∈ A(∼B), |x|B ≤ |y|B ≤ 4};

indeed we can replace the supremum with a maximum since we have a bounded set of
integers on the right hand side.

If (x, y) ∈ A(∼B), then (x, y) = (u1 · . . . · uk, v1 · . . . · vl), where k = |x|B, l = |y|B, and
ui, vj ∈ A(B) for all i ∈ [1, k] and j ∈ [1, l]. In this case, we call the atom (x, y) of type
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(k, l) and describe it by the defining relation u1 · . . . ·uk = v1 · . . . ·vl in B. Now the equation
from above reads the following

c(B) = max{|x|B | (x, y) ∈ A(∼B) is of type (k, l), where 2 ≤ k ≤ l ≤ 4}.

Hence we proceed with a list of defining relations for all atoms of type (k, l), where
2 ≤ k ≤ l ≤ 4. An atom will be called of character C ∈ [1, 15] if it is defined by the relation
(3.1.C) in the list below.
Let i, j ∈ [1, r + s], i 6= j. Then

(3.1.1) g2(pipjεiεj) = (piεig)(pjεjg)

describes an atom of type (2, 2) if and only if εi ∈ U1(Di), εj ∈ U1(Dj), and ι(piεi) =
ι(pjεj) = g;

(3.1.2) (pipjε(1)
i ε

(1)
j )(pipjε(2)

i ε
(2)
j ) = (p2

i ε
(1)
i ε

(2)
i )(p2

jε
(1)
j ε

(2)
j )

describes an atom of type (2, 2) if and only if ι(piε(1)
i ) = ι(piε(2)

i ) = ι(pjε(1)
j ) = ι(pjε(2)

j ) = g,
ε

(1)
i ε

(2)
i /∈ U1(Di)2

ι(pi), and ε
(1)
j ε

(2)
j /∈ U1(Dj)2

ι(pj);

(3.1.3) g2(p2
i ε1ε2) = (piε1g)(piε2g)

describes an atom of type (2, 2) if and only if either ε1, ε2 ∈ U1(Di)0, ε1ε2 /∈ (U1(Di)g)2,
and ι(pi) = g or ε1, ε2 ∈ U1(Di)g, ε1ε2 /∈ (U1(Di)0)2, and ι(pi) = 0;

(3.1.4) (piε1)(piε2) = (piη1)(piη2)

describes an atom of type (2, 2) if and only if ε1, ε2, η1, η2 ∈ U1(Di), ι(pi) = ι(ε1) =
ι(ε2) = ι(η1) = ι(η2), and ε1ε2 = η1η2;

(3.1.5) (piε1g)(piε2g) = (piη1g)(piη2g)

describes an atom of type (2, 2) if and only if ε1, ε2, η1, η2 ∈ U1(Di), ι(piε1) = ι(piε2) =
ι(piη1) = ι(piη2) = g, and ε1ε2 = η1η2;

(3.1.6) (piε1)(piε2g) = (piη1)(piη2g)

describes an atom of type (2, 2) if and only if ε1, ε2, η1, η2 ∈ U1(Di), ι(pi) = ι(ε1) = ι(η1),
ι(piε2) = ι(piη2) = g, and ε1ε2 = η1η2; and

(3.1.7) (piε1g)(piε2g) = (piη1)(piη2)g2 ,

describes an atom of type (2, 3) if and only if ε1, ε2, η1, η2 ∈ U1(Di), ε1ε2 = η1η2, ι(piε1) =
ι(piε2) = g, and ι(piη1) = ι(piη2) = 0. If these conditions are fulfilled, then ε1ε2 ∈
U1(Di)2

0 ∩U1(Di)2
g and therefore i ∈ I. Conversely, if i ∈ I, then U1(D1)2

0 ∩U1(Di)2
g 6= ∅. If

ι(pi) = g, let ε1, ε2 ∈ U1(Di)0 and η1, η2 ∈ U1(Di)g be such that ε1ε2 = η1η2. If ι(pi) = 0,
let ε1, ε2 ∈ U1(Di)g and η1, η2 ∈ U1(Di)0 be such that ε1ε2 = η1η2. In any case, (3.1.7)
holds.
Now let i ∈ I, j ∈ [1, r + s], and i 6= j. Then

(3.1.8) (pipjε(1)
i ε

(1)
j )(pipjε(2)

i ε
(2)
j ) = (piη(1)

i )(piη(2)
i )(p2

jε
(1)
j ε

(2)
j )

describes an atom of type (2, 3) if and only if ε(1)
i , ε

(2)
i , η

(1)
i , η

(2)
i ∈ U1(Di), ε(1)

j , ε
(2)
j ∈ U1(Dj),

ε
(1)
i ε

(2)
i = η

(1)
i η

(2)
i , ι(piε(1)

i ) = ι(piε(2)
i ) = ι(pjε(1)

j ) = ι(pjε(2)
j ) = g, ι(piη(1)

i ) = ι(piη(2)
i ) = 0,

and ε(1)
j ε

(2)
j /∈ U1(Dj)2

ι(pj). If these conditions are fulfilled, then ε(1)
i ε

(2)
i ∈ U1(Di)2

0∩U1(Di)2
g
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and therefore i ∈ I. However, if i ∈ I, then a relation (3.1.8) need not hold, since we
cannot guarantee that there exist ε(1)

j , ε
(2)
j ∈ U1(Dj) such that ε(1)

j ε
(2)
j /∈ U1(Dj)2

ι(pj).
Now let i, j ∈ I and i 6= j. Then

(3.1.9) (pipjε(1)
i ε

(1)
j )(pipjε(2)

i ε
(2)
j ) = (piη(1)

i )(piη(2)
i )(pjη(1)

j )(pjη(2)
j )

describes an atom of type (2, 4) if and only if ε(1)
i , ε

(2)
i , η

(1)
i , η

(2)
i ∈ U1(Di), ε(1)

j , ε
(2)
j , η

(1)
j ,

η
(2)
j ∈ U1(Dj), ε(1)

i ε
(2)
i = η

(1)
i η

(2)
i , ε(1)

j ε
(2)
j = η

(1)
j η

(2)
j , ι(piε(1)

i ) = ι(piε(2)
i ) = ι(pjε(1)

j ) =
ι(pjε(2)

j ) = g, and ι(piη(1)
i ) = ι(piη(2)

i ) = ι(pjε(1)
j ) = ι(pjη(2)

j ) = 0. If these conditions are
fulfilled, then ε(1)

i ε
(2)
i ∈ U1(Di)2

0 ∩ U1(Di)2
g and ε(1)

j ε
(2)
j ∈ U1(Dj)2

0 ∩ U1(Dj)2
g, and therefore

i, j ∈ I. Conversely, if i, j ∈ I, then a relation (3.1.9) holds (see the arguments for (3.1.7)).
Let i ∈ J , ε1, ε2, ε3, η1, η2, η3 ∈ U1(Di), and cDi((piε1)(piε2)(piε3), (piη1)(piη2)(piη3)) = 3.
Then

(3.1.10) (piε1)(piε2)(piε3) = (piη1)(piη2)(piη3)

describes an atom of type (3, 3) if and only if ι(pi) = ι(ε1) = ι(ε2) = ι(ε3) = ι(η1) =
ι(η2) = ι(η3);

(3.1.11) (piε1)(piε2)(piε3g) = (piη1)(piη2)(piη3g)

describes an atom of type (3, 3) if and only if ι(pi) = ι(ε1) = ι(ε2) = ι(η1) = ι(η2) and
ι(piε3) = ι(piη3) = g;

(3.1.12) (p2
i ε1ε2)(piε3) = (piη1)(piη2)(piη3)

describes an atom of type (2, 3) if and only if ε1ε2 /∈ (U1(Di)0)2 ∩ (U1(Di)g)2, ι(piε1) =
ι(piε2) = g, and ι(pi) = ι(ε1) = ι(η1) = ι(η2) = ι(η3);

(3.1.13) (p2
i ε1ε2)(piε3g) = (piη1)(piη2)(piη3g)

describes an atom of type (2, 3) if and only if ε1ε2 /∈ (U1(Di)0)2 ∩ (U1(Di)g)2, ι(piε1) =
ι(piε2) = ι(piε3) = ι(piη3) = g, and ι(pi) = ι(η1) = ι(η2);

(3.1.14) (p2
i ε1ε2)(piε3) = (p2

i η1η2)(piη3) ,

describes an atom of type (2, 2) if and only if ε1ε2, η1η2 /∈ (U1(Di)0)2 ∩ (U1(Di)g)2,
ι(piε1) = ι(piε2) = ι(piη1) = ι(piη2) = g, and ι(pi) = ι(ε3) = ι(η3); and

(3.1.15) (p2
i ε1ε2)(piε3g) = (p2

i η1η2)(piη3g)

describes an atom of type (2, 2) if and only if ε1ε2, η1η2 /∈ (U1(Di)0)2 ∩ (U1(Di)g)2, and
ι(piε1) = ι(piε2) = ι(piε3) = ι(piη1) = ι(piη2) = ι(piη3) = g.
Now we can do the actual proof.

1. If I = J = ∅, then only atoms of characters [1, 6] exist, and they all are of type
(2, 2). Hence, we obtain c(H) = c(B) = 2, and thus H is half-factorial.

2. If I = ∅ and J 6= ∅, then there are atoms of characters [1, 6] ∪ [10, 15], and they
are of types (2, 2), (2, 3), and (3, 3). Hence, it follows that c(H) ∈ {2, 3} and
4(H) ⊂ {1}.

3. If #I = 1, then atoms of characters [1, 7] exist and atoms of characters {8}∪ [10, 15]
might exist. The atoms of characters [1, 7] are of types (2, 2) and (2, 3) and the
atoms of characters {8} ∪ [10, 15] are of types (2, 3), (3, 3), and (2, 2). Thus we
have ρ(H) ≥ 3

2 and c(H) = 3, and therefore 4(H) = {1} by Lemma 1.2.9.4.
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4. If #I ≥ 2, then atoms of characters [1, 7] ∪ {9} exist and possibly also atoms of
characters {8} ∪ [10, 15] exist, and they are of types (2, 2), (2, 3), and (2, 4). Thus
we find c(H) = 4, {1, 2} ⊂ 4(H), and ρ(H) ≥ 2. Since ρ(H) ≤ 2 by Lemma 3.1.9.4,
we obtain the equality ρ(H) = 2 and, by Lemma 1.2.9.4, we find 4(H) = {1, 2}.

5. Let s = 0. If I = ∅, then H is half-factorial by part 1, and thus cmon(H) = c(H)
by Lemma 2.2.19.1.

If #I = 1, then atoms of characters [1, 7] exist and atoms of character 8
might exist. The atoms of characters [1, 7] are of types (2, 2) and (2, 3) and
the atoms of character 8 are also of type (2, 3). By Lemma 3.1.12.2, we have
cmon(H) = cmon(B) ≤ 3. By part 3, we find 3 = c(H) ≤ cmon(H), and thus
cmon(H) = 3.
It remains to show that ρ(H) = ρ(B) = 3

2 . By part 3, we have ρ(H) ≥ 3
2 . Thus

it suffices to show that ρ(H) ≤ 3
2 . Now let (x, y) ∈∼B with |y|B ≥ |x|B. Then

there is a monotone 3-chain concatening x and y, say x = z0, z1, . . . , zn = y with
z1, . . . , zn ∈ Z(πB(x)) and n ∈ N. Whenever |zi−1|B < |zi|B for some i ∈ [1, n],
then d(zi−1, zi) = 3 and there is an atom (z′i−1, z

′
i) ∈ A(∼H) of charachter 7 or 8

such that zi−1 = diz
′
i−1 and zi = diz

′
i, where di = gcd(zi−1, zi). Since atoms of

both characters, replace two very special atoms in A(B) (on the left side) by three
different atoms (on the right side) and there is no atom of character x ∈ [1, 6],
which generates the first special atoms, there are at most 1

2 |x|B such steps, and
thus |y|B ≤ 3

2 |x|B, what proves ρ(H) ≤ 3
2 .

If #I ≥ 2, then atoms of characters [1, 7]∪ {9} exist and possibly also atoms of
character 8 exist. The atoms of characters x ∈ [1, 7] ∪ {9} are of types (2, 2), (2, 3),
and (2, 4) and the atoms of character 8 are of type (2, 3). By Lemma 3.1.12.2, we
have cmon(H) = cmon(B) ≤ 4 and, by part 4, we obtain 4 = c(H) ≤ cmon(H), and
thus cmon(H) = 4.

In order to finish the proof, we need an additional Lemma.

Lemma 3.1.14. Let D be a monoid, P ⊂ D be a set of prime elements, r ∈ N, and let
Di ⊂ D̂i = [pi] × D̂i

× reduced half-factorial monoids of type (1, 1) for all i ∈ [1, r] such
that D = F(P )×D1 × . . .×Dr. Let H ⊂ D be a saturated submonoid, let G = q(D/H)
be its class group with #G = 2, say G = {0, g}, let each class in G contain some p ∈ P ,
and define a homomorphism ι : D1 × . . . × Dr → G by ι(t) = [t]D/H . Furthermore, let
B(G,D1 × . . .×Dr, ι) be the (D1 × . . .×Dr)-block monoid defined by ι over G and let B
be half-factorial but not factorial.
Then t(H) = t(B) = 2.

Proof. Throughout the proof, we write B = {S ∈ B(G,D1×. . .×Dr+s, ι) | 0 - S} as in
Lemma 1.2.16.4. By Proposition 3.1.13.1-4, we find that {i ∈ [1, r] | (U1(Di))0∩(U1(Di))g 6=
∅} = ∅, and thus ι(D̂i

×) = {0} for all i ∈ [1, r]. Now let h ∈ H, z ∈ Z(h), and a ∈ A(H)
be such that a | h. Then we prove that d(z, z′) ≤ 2 for some z′ ∈ Z(h) ∩ aZ(H). We may
assume that a - z. We find that z is of the following form:

z = q1 · . . . · qk(q
(1)
1 q

(2)
1 ) · . . . · (q(1)

l q
(2)
l )t1 · . . . · tm,
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where q1, . . . , qk, q
(1)
1 , q

(2)
1 , . . . , q

(1)
l , q

(2)
l ∈ P , [q1]D/H = . . . = [qk]D/H = 0, [q(1)

1 ]D/H =
[q(2)

1 ]D/H = . . . = [q(1)
l ]D/H = [q(2)

l ]D/H = g, and t1, . . . , tm ∈ A(D1 × . . . ×Dr). Now we
have the following three possibilities for a.

a = q̄ with q̄ ∈ P, [q̄]D/H = 0, or

a = q̄(1)q̄(2) with q̄(1), q̄(2) ∈ P, [q̄(1)]D/H = [q̄(2)]D/H = g, or

a = u with u ∈ A(Di) for some i ∈ [1, r].

We proceed case by case. Let a = q̄, where q̄ ∈ P and [q̄]D/H = 0. Since q1, . . . , qk, q
(1)
1 ,

q
(2)
1 , . . . , q

(1)
l , q

(2)
l ∈ P are prime in D and since [q̄]D/H = 0, we find q̄ ∈ {q1, . . . , qk}. Thus

a = q̄ | z, a contradiction. Let a = q̄(1)q̄(2), where q̄(1), q̄(2) ∈ P and [q̄(1)]D/H = [q̄(2)]D/H =
g. By the same arguments as before, we find q̄(1), q̄(2) ∈ {q(1)

1 , q
(2)
1 , . . . , q

(1)
l , q

(2)
l }. Since

a - z, there is no i ∈ [1, l] such that without loss of generality q̄(j) = q̄
(j)
i for j = 1, 2.

Thus there are i, j ∈ [1, l] with i 6= j such that without loss of generality q̄(1) = q
(1)
i and

q̄(2) = q
(2)
j . Now we find the factorization z′ ∈ Z(h),

z′ = q1 · . . . · qk(q
(1)
i q

(2)
j )(q(1)

j q
(2)
i )

s=l∏
s=1s6=i,j

(q(1)
s q(2)

s )t1 · . . . · tm,

such that d(z, z′) = 2 and a | z′. Lastly, we consider the case a = u with u ∈ A(Di) for
some i ∈ [1, r]. Then there are u1, . . . , um̄ ∈ A(D1 × . . .×Dr) such that

t1 · . . . · tm = uu1 · . . . · um̄ and dD1×...×Dr (t1 · . . . · tm, uu1 · . . . · um̄) ≤ 2.

Now we find a factorization z′ ∈ Z(h) by setting

z′ = q1 · . . . · qk(q
(1)
1 q

(2)
1 ) · . . . · (q(1)

l q
(2)
l )uu1 · . . . · um̄,

and d(z, z′) ≤ 2 follows. �

6. Let s = 0 and ι(pi) = 0 for all i ∈ [1, r]. If H is not half-factorial, then c(H) ≥ 3
and therefore t(H) ≥ 3. Otherwise, if H is half-factorial, then c(H) = c(B) = 2,
and therefore I = ∅ by points 1-4. Thus ι(u) = ι(pi) = 0 for all u ∈ A(Di) and
i ∈ [1, r], and any a ∈ A(B) is either of the form a = g2 or a = u with u ∈ A(Di)
for some i ∈ [1, r]. Since, by Lemma 3.1.3.2, t(Di) = 2 for all i ∈ [1, r], we have
t(B) = 2. Now the assertion follows by Lemma 3.1.14. �

The following example shows that the very special structure of D in the hypothesis of
Lemma 3.1.14—in terms of Example 3.1.15 the structure T—is definitely necessary for the
assertion of Lemma 3.1.14 to hold.

Example 3.1.15. Let P be a set of prime elements and T be an atomic monoid such
that D = F(P )× T . Let H ⊂ D be a saturated submonoid with class group D/H = C2

such that each class in C2 contains some p ∈ P . Let ι : T → C2, t 7→ [t]D/H be a
homomorphism and B(C2, T, ι) the T -block monoid over C2 defined by ι. Furthermore let
t(B(C2, T, ι)) = 2.
This situation does not imply t(H) = 2.

Proof. We write C2 = {0, g} and we set B(C2, T, ι) and denote by β : H → B the
block homomorphism of H and by β̄ : Z(H)→ Z(B) the canonical extension of the block
homomorphism.
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By definition, it is sufficient to prove t(a, v) ≥ 3 for some a ∈ H and some v ∈ A(H). Let
a ∈ H and v ∈ A(H).
We have the following for types of atoms of H which are not prime:

v = p1p2 with p1, p2 ∈ P and [p1]D/H = [p2]D/H = g

v = pt with p ∈ P, t ∈ T and [p]D/H = [t]D/H = g

v = t1t2 with t1, t2 ∈ A(T ) and [t1]D/H = [t2]D/H = g

v = t with t ∈ A(T ) and [t]D/H = g

Let z ∈ ZH(a). Without loss of generality, we may assume that no prime elements divide
a. Then z is of the following form:

z = (p1p2) · . . . · (pl−1pl)(pl+1s1) · . . . · (pl+msm)(t1t2) · . . . · (tn−1tn)u1 · . . . · uo.

Let v = q1q2 be of the first type. Since all p ∈ P are prime in D, we find i, j ∈ [1, l +m]
such that pi = q1 and pj = q2. Assume i = l + 1 and j = l + 2. Then we find

z′ = (pl+1pl+2)(p1s1)(p2s2)(p1p2)−1(pl+1s1)−1(pl+2s2)−1z.

Thus d(z, z′) = 3. If we apply β̄ to z′, we find

β̄(z′) = g2(gs1)(gs2)(g2)−1(gs1)−1(gs2)−1β̄(z) = β̄(z),

and thus d(β̄(z), β̄(z′)) = 0. �

Corollary 3.1.16. Let D be an atomic monoid, P ⊂ D a set of prime elements,
r ∈ N, and let Di ⊂ [pi] × D̂i

× = D̂i be reduced half-factorial monoids of type (1, 1) for
all i ∈ [1, r] such that D = F(P ) × D1 × . . . × Dr. Let H ⊂ D be a saturated atomic
submonoid, G = q(D/H) its class group, and let each class in G contain some p ∈ P .
Then the following are equivalent:

• cmon(H) ≤ 2.
• c(H) ≤ 2.
• H is half-factorial.

If, additionally, [pi]D/H = 0D/H for all i ∈ [1, r]—in particular, this is true if #G = 1—then
the following is also equivalent:

• t(H) ≤ 2.

Proof. By Lemma 3.1.9.3, #G ≥ 3 implies c(H) ≥ 3 and thus that H is never half-
factorial. Thus we have #G ≤ 2. If #G = 2, then the assertion follows by Proposition 3.1.13.
If #G = 1, the assertion follows by Lemma 3.1.9.2 and Lemma 3.1.9.1. �

Lemma 3.1.17. Let O be a locally half-factorial order in an algebraic number field.
Then there is a monoid D, a set of prime elements P ⊂ D, r ∈ N, and reduced half-factorial
but not factorial monoids Di ⊂ [pi] × D̂i

× = D̂i of type (1, ki) with ki ∈ {1, 2} for all
i ∈ [1, r] such that D = F(P ) × D1 × . . . × Dr, I∗(O) ∼= D, O•red ⊂ D is a saturated
submonoid, Pic(O) = q(D/O•red) is its class group, and each class contains some p ∈ P .
If, additionally, all localizations of O are finitely primary monoids of exponent 1, then
ki = 1 for all i ∈ [1, r].
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Proof. Let O be an order in an algebraic number field and let I∗(O) be half-factorial.
We set O for the integral closure of O and set f = (O : O), P = {p ∈ X(O) | p 6⊃ f},
P∗ = {p ∈ X(O) | p ⊃ f}, and

T =
∏
p∈P∗

(O•p)red.

By [14, Theorem 3.7.1], we find that P∗ is finite, O•red ⊂ F(P) × T is a saturated and
cofinal submonoid, Pic(O) = Cv(O) = (F(P) × T )/O•red, and, for all p ∈ X(O), O•p is a
finitely primary monoid of rank sp, where sp is the number of prime ideals p ∈ X(O) such
that p∩O = p. For p ∈ P∗, the local domain Op is not integrally closed, hence not factorial,
and therefore the monoid (O•p)red is not factorial, too. Since I∗(O) ∼=

∏
p∈X(O)(O•p)red by

[14, Theorem 3.7.1], we find, for all p ∈ X(O), that Op is half-factorial, and thus, by the
additional statement in Lemma 3.1.3.1, O•p is a half-factorial monoid of type (1, kp), where
kp is the rank of O•p . By [18, Corollary 3.5], we find kp ≤ 2. Now we set Di = (O•p)red for
some p ∈ P∗ such that T = D1 × . . .×Dr and we set P = P. By [14, Corollary 2.11.16],
every class contains infinitely many primes p ∈ P . Since, by the above, ki is the exponent
of Di for all i ∈ [1, r], the additional statement is obvious. �

In the hypotheses of the following theorem we restrict to locally half-factorial orders
in algebraic number fields. This seems reasonable since there are no known half-factorial
orders, which are not locally half-factorial, and—see Corollary 3.1.24—this assumption is
satisfied for orders in quadratic number fields.

Theorem 3.1.18. Let O be a non-principal locally half-factorial order in an algebraic
number field and set P∗ = {p ∈ X(O) | p ⊃ (O : O)}.
Then we have

1. If # Pic(O) = 1, then O is half-factorial.
2. If # Pic(O) ≥ 3, then (D(Pic(O)))2 ≥ c(O) ≥ 3, min4(O) = 1, and ρ(O) > 1.
3. If # Pic(O) = 2, then ρ(O) ≤ 2, 2 ≤ c(O) ≤ 4, and min4(O) ≤ 1.

If, additionally, all localizations of O are finitely primary monoids of exponent 1,
then, setting k = #{p ∈ P∗ | [O×p /O×p ]Pic(O) = Pic(O)}, it follows that
• cmon(O) = c(O) = 2 + min{2, k} ∈ {2, 3, 4};
• ρ(O) = 1

2c(O) ∈ {1, 3
2 , 2};

• 4(O) = [1, c(O)− 2] ⊂ [1, 2];
and the following are equivalent:
• cmon(O) = 2.
• c(O) = 2.
• O is half-factorial.

If, additionally, [p] = 0Pic(O) for all p ∈ P∗, then the following is also equivalent:
• t(O) = 2.

In particular, min4(O) ≤ 1 always holds.

Proof. By Lemma 3.1.17, there is a monoid D, a set of prime elements P ⊂ D, r ∈ N,
and reduced half-factorial but not factorial monoids Di ⊂ [pi]× D̂i

× = D̂i of type (1, ki)
with ki ∈ {1, 2} for all i ∈ [1, r] such that D = F(P )×D1× . . .×Dr, I∗(O) ∼= D, O•red ⊂ D
is a saturated submonoid, Pic(O) = q(D/O•red) is its class group, and each class contains
some p ∈ P .
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1. If # Pic(O) = 1, then the assertion follows by Lemma 3.1.9.2.
2. If # Pic(O) ≥ 3, then the assertion follows by Lemma 3.1.9.3.
3. If # Pic(O) = 2, then ρ(O) ≤ 2 and 2 ≤ c(O) ≤ 4 by Lemma 3.1.9.4. If,

additionally, all localizations of O are finitely primary monoids of exponent 1,
then, by Lemma 3.1.17, we have ki = 1 for all i ∈ [1, r]. If k = 0, then we are in
the situation of Proposition 3.1.13.1 and thus O is half-factorial, c(O) = 2, and
4(O) = ∅. If k ≥ 2, then we are in the situation of Proposition 3.1.13.4, and thus
ρ(O) = 2, c(O) = 4, and 4(O) = {1, 2}. If k = 1, then we are in the situation
of Proposition 3.1.13.3, and thus ρ(O) ≥ 3

2 , c(O) = 3, and 4(O) = {1}. Since
ki = 1 for all i ∈ [1, r], we may use Proposition 3.1.13.5, and thus we find ρ(O) = 3

2
if k = 1 and cmon(O) = c(O) in all cases. Putting all this together, we obtain
the formulas in the assertion. The equivalence of the four statements follows by
Corollary 3.1.16.

In particular, in all situations, we find min4(O) ≤ 1. �

In the case of quadratic and cubic number fields, we can do even better. First, we
recall and reformulate a definition and the key result from [18].
Let O be an order in an algebraic number field and p ∈ X(O). Then we call Op a local
order. Now let Op be a local order such that its integral closure Op is local too. Now we fix
the following notions. We denote by m respectively m the maximal ideal of Op respectively
Op, by k = Op/m and k = Op/m the residue class fields, and by π : Op → k the canonical
homomorphism. For a prime p ∈ Op and i ∈ N, we set

Ui,p(Op) = {ε ∈ Op
× | εpi ∈ Op} and Vi,p(Op) = π(Ui,p(Op)) ∪ {0},

as in [18]. Then Vi,p(Op) is a k-subspace of k by [18].

Lemma 3.1.19 ([18, Theorem 3.3]). Using the above notions, the following are equiva-
lent:

1. Op is half-factorial.
2. (U1,p(Op))2 = Op

×.
3. {xy | (x, y) ∈ V1,p(Op)× V1,p(Op)} = k.

Lemma 3.1.20. Let O be an order in an algebraic number field and p ∈ X(O) such that
Op is half-factorial.

1. Op is local and every atom of Op is a prime of Op.
2. Let m respectively m be the maximal ideals of Op respectively Op and let k = Op/m

and k = Op/m be the residue class fields.
If dimk k ≤ 3, then O•p ⊂ Op

• is a finitely primary monoid of exponent 1.
In particular, if O is an order in a quadratic or cubic number field, then O•p ⊂ Op

•

is a finitely primary monoid of exponent 1.

Whenever Op is a Cohen-Kaplansky domain, i.e., whenever it has up to units only
finitely many atoms, the result from Lemma 3.1.20.1 can be found in [1, Theorem 6.3].

Proof of Lemma 3.1.20.

1. The assertion follows by Lemma 3.1.3.1.
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2. By part 1, Op is local too. Thus m respectively m is well-defined and k respectively
k is a field. Since Op has up to units only one prime element by part 1 we write
V1(Op) instead of V1,p(Op) and U1(Op) instead of U1,p(Op). Furthermore, we find
U1(O•p) = U1(Op). For short, we write m = dimk k, n = dimk V1(Op), and q = #k.
Now we distinguish three cases by m.
Case 1 m = 1. Here k = k and therefore V1(Op) = k. Thus U1(Op) = Op

× by [18,
Lemma 3.2], and therefore O•p ⊂ O•p is of exponent 1 by the additional statement
of Lemma 3.1.3.1.
Case 2 m = 2. If n = 1, then V1(Op) = k, and therefore V1(Op) ∗ V1(Op) = k 6= k,
a contradiction to Lemma 3.1.19.3. If n = 2, then V1(Op) = k, and the assertion
follows as in Case 1.
Case 3 m = 3. If n = 1, then we find the same contradiction as in Case 2 when
n = 1 there. If n = 2, then #(V1(Op) ∗ V1(Op)) < q3 = #k by [18, Lemma 2.5].
This is again a contradiction to Lemma 3.1.19.3. If n = 3, then V1(Op) = k, and
the assertion follows as in Case 1.
Let K be the algebraic number field containing O. Then we find m ≤ [K : Q] and
the assertion follows. �

Now we can prove a slightly refined version of Theorem 3.1.18 for orders in quadratic
and cubic number fields.

Corollary 3.1.21. Let O be a non-principal locally half-factorial order in a quadratic
or cubic number field and set P∗ = {p ∈ X(O) | p ⊃ (O : O)}.
Then we have

1. If # Pic(O) = 1, then O is half-factorial.
2. If # Pic(O) ≥ 3, then (D(Pic(O)))2 ≥ c(O) ≥ 3, and min4(O) = 1.
3. If # Pic(O) = 2, then, setting k = #{p ∈ P∗ | [O×p /O×p ]Pic(O) = Pic(O)}, it follows

that
• cmon(H) = c(O) = 2 + min{2, k} ∈ {2, 3, 4};
• ρ(O) = 1

2c(O) ∈ {1, 3
2 , 2};

• 4(O) = [1, c(O)− 2] ⊂ [1, 2].

In particular, min4(O) ≤ 1 always holds, and the following are equivalent:

• cmon(O) = 2.
• c(O) = 2.
• O is half-factorial.

If, additionally, [p] = 0Pic(O) for all p ∈ P∗—this is always true if # Pic(O) = 1 or if O is
an order in a quadratic number field—then the following is also equivalent:

• t(O) = 2.

Proof. Part 1 respectively part 2 follows immediately from Theorem 3.1.18.1 respec-
tively Theorem 3.1.18.2. By Lemma 3.1.20.2, all localizations Op for p ∈ X(O) are finitely
primary monoids of exponent (at most) 1. Thus part 3 follows by the additional statement
of Theorem 3.1.18.3.
Now we prove the additional statement. First note min4(O) ≤ 1 follows by the additional
statement of Theorem 3.1.18. If # Pic(O) ≥ 3, then none of the equivalent conditions
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holds by part 2. If # Pic(O) = 2, then the four equivalent conditions are shown in
the additional statement of Theorem 3.1.18.3. If # Pic(O) = 1, then O ∼= I∗(O), and
therefore O is half-factorial. By Lemma 3.1.17 and Lemma 3.1.20.2, there is a monoid
D, a set of prime elements P ⊂ D, r ∈ N, and reduced half-factorial but not factorial
monoids Di ⊂ [pi] × D̂i

× = D̂i of type (1, ki) with ki ∈ {1, 2} for all i ∈ [1, r] such that
D = F(P )×D1× . . .×Dr and I∗(O) ∼= D. Now the other equivalent conditions follow by
Lemma 3.1.3.2. �

If we compare the equivalent conditions in Corollary 3.1.21 for non-principal locally
half-factorial orders in quadratic or cubic number fields with the ones given in [14, Theorem
1.7.3.6]—see below—for principal orders in algebraic number fields, we see that at least
these special non-principal orders behave nearly the same as the principal ones.

Theorem 3.1.22 (cf. [14, Theorem 1.7.3.6]). Let O be a principal order in a quadratic
or cubic number field.
Then the following are equivalent.

1. O is half-factorial.
2. # Pic(O) ≤ 2.
3. t(O) ≤ 2.
4. c(O) ≤ 2.

By Corollary 3.1.21.3, we get an additional bound on the elasticity of a non-principal
order O in a quadratic or cubic number field such that its conductor is an inert prime
ideal, say (O : O) = p ∈ X(O) and pO ∈ X(O), in fact ρ(O) ≤ 3

2 . Now we revisit the
example from [16, example at the end of the publication]: Let O = Z[3i]. Then O = Z[i],
# Pic(O) = 2, O is locally half-factorial, and (O : O) = 3O ∈ X(O) is an inert prime ideal
in O. We set β = 1 + 2i and β′ = 1− 2i. Then 3β, 3β′, 3, and 5 are irreducible elements of
O satisfying (3β)(3β′) = 32 · 5; thus ρ(O) ≥ 3

2 . Now we have equality by Corollary 3.1.21.3.

3.1.3. Localizations of half-factorial orders.

Proposition 3.1.23. Let D be a monoid, P ⊂ D be a set of prime elements, and
let T ⊂ D be a reduced atomic submonoid such that D = F(P ) × T . Let D1 ⊂ T be a
divisor-closed submonoid and let D1 ⊂ [p] × D̂1

× = D̂1 be a finitely primary monoid of
rank 1 and exponent k. Let H ⊂ D be a saturated half-factorial submonoid, G = q(D/H)
its class group, and let each class in G contain some p′ ∈ P .
Then #G ≤ 2 and D1 is either

• half-factorial or
• #G = 2, say G = {0, g}, vp(A(D1)) = {1, 2}, [p]D/H = g, and [ε]D/H = 0 for all
ε ∈ D̂1

×.

Proof. Define a homomorphism ι : T → G by ι(t) = [t]D/H . Throughout the proof
we write B = {S ∈ B(G,T, ι) | 0 - S} as in Lemma 1.2.16.4. If #G ≥ 3, then it follows by
Lemma 1.2.17.1 that H is not half-factorial. If #G = 1, then H = D and, obviously, the
first case of the assertion holds. Now, let #G = 2, say G = {0, g}. Since H is half-factorial,
B is also half-factorial by Lemma 1.2.16. By Lemma 3.1.6, vp(A(D1)) = {1} is equivalent
to D1 half-factorial. We show that either
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• vp(A(D1)) = {1} or
• vp(A(D1)) = {1, 2}, ι(p) = g, and ι(D̂1

×) = {0}.
If #vp(A(D1)) = 1, i.e., vp(A(D1)) = {n}, then we find n = 1 since N≥k ⊂ nN0. Suppose
we have #vp(A(D1)) > 1. Then there are n = min vp(A(D1)) and m = max vp(A(D1))
> n. Let ε, η ∈ D̂1

× be such that pnε, pmη ∈ A(D1). Now we distinguish four cases by
ι(pnε) and ι(pmη).
Case 1 ι(pnε) = ι(pmη) = 0. Then pnε, pmη ∈ A(B), and we find

(pmη)k = (pnε)k(p(m−n)kηkε−k).

There are k atoms on the left side and at least k+1 on the right side; clearly a contradiction
to B half-factorial.
Case 2 ι(pnε) = ι(pmη) = g. Then pnεg, pmηg ∈ A(B), and we find

(pmηg)k = (pnεg)k(p(m−n)kηkε−k)

There are k atoms on the left side and at least k+1 on the right side; clearly a contradiction
to B half-factorial.
Case 3 ι(pnε) = 0 and ι(pmη) = g. Then pnε, pmηg ∈ A(B), and we find

(pmηg)k =

(pnε)k(g2)
k
2 (p(m−n)kηkε−k) k even

(pnε)k(g2)
k−1

2 (p(m−n)kηkε−kg) k odd.

There are k atoms on the left side and, in both cases, at least k + 1 + k−1
2 on the right

side; clearly a contradiction to B half-factorial.
Case 4 ι(pnε) = g and ι(pmη) = 0. Then pnεg, pmη ∈ A(B). Now we must again
distinguish four cases.

Case 4.1 2n < m and k even. Here we find

(g2)
k
2 (pmη)k = (pnεg)k(p(m−n)kε−kηk).

There are 5
2k atoms on the left side and at least k +

⌈
(m−n)k

m

⌉
atoms on the right side.

This is a contradiction to B half-factorial, since m > 2n by assumption.
Case 4.2 2n < m and k odd. Here we find

(g2)
k+1

2 (pmη)k+1 = (pnεg)k+1(p(m−n)(k+1)ε−k−1ηk+1).

This leads to a contradiction as in the case where k was even.
Case 4.3 m < 2n and k even. We choose l ∈ N maximal with lm ≤ (n− 1)k, and we

find
(pnεg)k = (g2)

k
2 (pnk−lmεkη−l)(pmη)l.

There are k atoms on the left side and at least k
2 +

⌈
nk−lm
m

⌉
+ l on the right. This is a

contradiction to B half-factorial, since m < 2n by assumption.
Case 4.4 m < 2n and k odd. We choose l ∈ N maximal with lm ≤ (n− 1)(k+ 1), and

we find a contradiction to B half-factorial by looking at

(pnεg)k+1 = (g2)
k+1

2 (pn(k+1)−lmεk+1η−l)(pmη)l.

Case 4.5 m = 2n. In this particular case, we must again handle two additional cases.
Case 4.5.1 n > 1. Then there is n′ ∈ (n, 2n) and γ ∈ D̂×1 such that pn′γ ∈ A(D1). If

ι(pn′γ) = 0, then the assertion follows with pn′γ and pmη as in Case 1. If ι(pn′γ) = g, then
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the assertion follows with pnε and pn
′
γ as in Case 2.

Case 4.5.2 n = 1. Then m = 2n = 2. Without loss of generality we may assume
that p ∈ D1. Furthermore, ι(p2η) = 0 implies ι(η) = 0. For the moment, we assume that
ι(p) = 0 and ι(ε) = g. Then we are done by Case 1 with p and p2η. If now ι(p) = g

and ι(ε) = 0, we show ι(D̂1
×) = {0} or vp(A(D1)) = {1}. If ι(D̂1

×) = {0}, then the
second case in the assertion is fulfilled. Now suppose ι(D̂1

×) = G, say there is some
γ ∈ D̂1

× with ι(γ) = g. Then there is some k′ ∈ [1, k] such that pk′γ ∈ D1. Thus there
are ε1, . . . , εl, η1, . . . , ηl′ ∈ D̂1

× such that (pε1) · . . . · (pεl)(p2η1) · . . . · (p2ηl′) = pk
′
γ is a

factorization of pk′γ in D1. Thus ε1 · . . . · εlη1 · . . . · ηl′ = γ, and therefore either ι(εi) = g

for some i ∈ [1, l] or ι(ηj) = g for some j ∈ [1, l′]. In the first case, we are in the situation
of Case 1 with pεi and p2η, and in the second case, we are in the situation of Case 2 with
p and p2ηj . �

Corollary 3.1.24. Let O be a half-factorial order in an algebraic number field K,
OK is integral closure, and let p ∈ X(O) be a prime ideal of O such that p ⊃ (O : OK).
Then # Pic(O) ≤ 2 and Op is either

• half-factorial, and O•p ⊂ (OK)•p is a half-factorial monoid of type (1, k) with
k ∈ {1, 2}, or
• p ramifies in OK with ramification degree 2, i.e. there is some p ∈ (OK)p prime

such that p2 ∼ p.
In particular, if K is a quadratic number field, then Op is half-factorial.

Proof. Let O be a half-factorial order in an algebraic number field K, let OK be its
integral closure, let P = {p ∈ X(O) | p 6⊃ (O : OK)}, and let P∗ = {p ∈ X(O) | p ⊃ (O :
OK)}. By [14, Theorem 3.7.1], we find that

O•red ⊂ F(P)× T with T =
∏
p∈P∗

(O•p)red

is a saturated cofinal submonoid with class group Pic(O). Now, we obtain # Pic(O) ≤ 2
by Lemma 1.2.17.1. Since O is half-factorial, i.e., ρ(O) = 1 <∞, we find, by [16, Corollary
4.i], that p does not split in OK . Thus (OK)p is a discrete valuation domain, in particular,
it is local, and thus O•p ⊂ (OK)•p is a finitely primary monoid of rank 1. Since (O•p)red ⊂ T
is a divisor-closed submonoid, the assertion follows immediately by Proposition 3.1.23.
If K is a quadratic number field, then O half-factorial implies that p is inert by [14,
First paragraph in the Proof of A2 in the Proof of Theorem 3.7.15], and therefore Op is
half-factorial. �

3.1.4. Characterization of half-factorial orders in quadratic number fields.

Corollary 3.1.25. Let O be a non-principal order in a quadratic number field K, let
OK be its integral closure, and let P∗ = {p ∈ X(O) | p ⊃ (O : OK)}.
Then the following are equivalent:

1. O is half-factorial.
2. c(O) = 2.
3. # Pic(O) ≤ 2, O is locally half-factorial and, for all p ∈ P∗, [(OK)×p /O×p ]Pic(O) =

[0]Pic(O).
4. # Pic(O) ≤ 2 and, for all p ∈ P∗,
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• [(OK)×p /O×p ]Pic(O) = [0]Pic(O),
• p is inert in OK , and
• p2 6⊃ (O : OK).

Proof. 1 ⇔ 2 By Corollary 3.1.24, we have I∗(O) half-factorial. Thus the assertion
is already shown in the additional statement of Corollary 3.1.21.
1 ⇒ 3 By Corollary 3.1.24, # Pic(O) ≤ 2 and Op is half-factorial for all p ∈ P∗. Now we get
[(OK)×p /O×p ]Pic(O) = [0]Pic(O) by the same construction as in the proof of Corollary 3.1.21
and Theorem 3.1.18 using Proposition 3.1.13.
3 ⇒ 1 Since, by assumption, O is locally half-factorial, this implication follows, directly,
by the same construction as in the proof of Corollary 3.1.21 and Theorem 3.1.18 using
Proposition 3.1.13.
3 ⇔ 4 Since, for all p ∈ P∗, Op is half-factorial if and only if p is inert in OK and
p2 6⊃ (O : OK), the assertion follows. �

3.2. Non-principal locally half-factorial orders in algebraic number fields
with cyclic class groups

3.2.1. Monoid-theoretic situation.

Lemma 3.2.1. Let D be a monoid, P ⊂ D be a set of prime elements, D1 ⊂ D be an
atomic submonoid, and D2 ⊂ [p]× D̂2

× = D̂2 be a reduced monoid of type (1, 1) such that
D = F(P ) × D1 × D2. Let H ⊂ D be a saturated atomic submonoid, G = q(D/H) be
its class group, suppose each class in G contains some p ∈ P , define a homomorphism
ι : D1 ×D2 → G by ι(t) = [t]D/H , and suppose #G ≥ 2 and ι(D2) = [1]D/H .
Then there is an atomic submonoid H ′ ⊂ H such that H ′ ⊂ D′ = F(P )×D1 is a saturated
submonoid with class group q(D′/H ′) = G. Furthermore, c(H) = c(H ′), ρ(H) = ρ(H ′),
and 4(H) = 4(H ′).

Proof. Since ι(D2) = [1]D/H we clearly have D2 ⊂ H and, since H ⊂ D is a saturated
submonoid and since there is a submonoid D′ = F(P )×D1 ⊂ D such that D = D′ ×D2,
there is some H ′ ⊂ H such that H = H ′ ×D2. Obviously, H ′ ⊂ D′ is also a saturated
submonoid. By Lemma 1.2.18.3-5 and by Lemma 3.1.3, we have

c(H) = sup{c(H ′), c(D2)} = sup{c(H ′), 2} = c(H ′);

ρ(H) = sup{ρ(H ′), ρ(D2)} = sup{ρ(H ′), 1} = ρ(H ′); and

4(H ′) ∪4(D2) ⊂ 4(H),

and, since 4(D2) = ∅, equality holds. �

Lemma 3.2.2. Let m ∈ N≥2, n ∈ N, k1, . . . , km ∈ N, k ∈ (0, n) be such that
m∑
i=1

ki + k ≡ 0 mod n and
m∑
i=1

ki > n.

Then there are

∅ 6= I ( [1,m] and k′ ∈ [0, k] such that
∑
i∈I

ki + k′ ≡ 0 mod n.
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Proof. Since
∑m
i=1 ki + k ≡ 0 mod n and k ∈ (0, n), clearly,

∑m
i=1 ki 6≡ 0 mod n.

Now we proceed by induction on m. If m = 2, we have k1+k2 > jn and k1+k2+k = (j+1)n
for some j ∈ N. Now we choose k′1, k′2 ∈ [0, k) and j1, j2 ∈ N with j1 + j2 = j+ 1 such that
ki = jin− k′i for i = 1, 2. Then we have j1n− k′1 + j2n− k′2 + k = (j + 1)n, and therefore
k = k′1 + k′2. Hence, we get the assertion with I = {1} ( {1, 2} and k′ = k′1 ≤ k.
Now let m > 2. To proceed from m to m+ 1, we can simply use the base case on

∑m
i=1 ki

and km+1. �

Lemma 3.2.3. Let D be a monoid, P ⊂ D a set of prime elements, r ∈ N, and
Di ⊂ [pi]× D̂i

× = D̂i reduced but not factorial monoids of type (1, 1) for all i ∈ [1, r] such
that D = F(P )×D1 × . . .×Dr. Let H ⊂ D be a saturated submonoid, G = q(D/H) be
its class group cyclic of order n ≥ 2, suppose each class in G contains some p ∈ P , define
a homomorphism ι : D1 × . . . ×Dr → G by ι(t) = [t]D/H , and let s ∈ [1, r] be such that
ι(pi) = [1]D/H for all i ∈ [1, s] and ι(Di) = [1]D/H for all i ∈ [s+ 1, r].
Then we have

A(B(G,D1 × . . .×Dr, ι)) ={
S
∏
i∈I

piεi

∣∣∣∣∣S ∈ F(G), I ⊂ [1, s], εi ∈ D̂i
×
,
∑
i∈I

ι(piεi) + σ(S) = 0, and

∑
i∈J

ι(piεi) + σ(S′) 6= 0 for all J ⊂ I and

S′ | S without J = I and S′ = S at the same time
}

∪
{
piεi

∣∣∣i ∈ [s+ 1, r], εi ∈ D̂i
×}

In particular, if a = gk
∏
i∈I piεi ∈ A(B(G,D1 × . . . ×Dr, ι)) with k < n, I ⊂ [1, s], and

εi ∈ D̂i
×. Then either

•
∑
i∈I

(G : 〈ι(εi)〉) < n or

•
∑
i∈I

(G : 〈ι(εi)〉) ≡ 0 mod n.

Proof. The main part of the lemma follows by Lemma 3.2.1 and the structure of
the set atoms of a monoid of type (1, 1) given in Lemma 3.1.3. The additional statement
follows by Lemma 3.2.2. �

Now we are able to give some non-trivial lower bounds on the elasticity.

Proposition 3.2.4. Let D be a monoid, P ⊂ D a set of prime elements, r ∈ N, and
Di ⊂ [pi]× D̂i

× = D̂i reduced but not factorial monoids of type (1, 1) for all i ∈ [1, r] such
that D = F(P )×D1 × . . .×Dr. Let H ⊂ D be a saturated submonoid, G = q(D/H) its
class group cyclic of order n ≥ 2, say G = 〈g〉, suppose each class in G contains some
p ∈ P , define a homomorphism ι : D1 × . . .×Dr → G by ι(t) = [t]D/H , and let s ∈ [1, r]
be such that ι(pi) = [1]D/H for i ∈ [1, s] and ι(Di) = [1]D/H for i ∈ [s+ 1, r].

1. ρ(H) ≥ D(G)
2 .
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2. Let ∅ 6= I ⊂ [1, s] be a non-empty subset such that #I ≤ n and
∑
i∈I

(G : ι(D̂i
×)) ≤ n.

Then

ρ(H) ≥ #I + 1−
∑
i∈I

(G : ι(D̂i
×))

D(G) .

In particular, the right hand side obtains its maximum whenever I is maximal with
respect to its cardinality and

∑
i∈I

(G : ι(D̂i
×)) is minimal.

3. Let ∅ 6= J ⊂ [1, s] be a non-empty subset such that #J ≤ n and, for j ∈ J , let
εj ∈ D̂j

×
\ D̂j

×
0 be such that

∑
j∈J

(G : 〈ι(εj)〉) ≡ 0 mod n and there is no proper

non-empty subset ∅ 6= J ′ ( J such that
∑
j∈J ′

(G : 〈ι(εj)) ≡ 0 mod n.

Then

ρ(H) ≥ #J.

In particular, the right hand side obtains its maximum whenever J is maximal with
respect to its cardinality.

If, in particular, n ∈ P is prime and ∅ 6= I ⊂ [1, s] is a non-empty subset with #I ≤ n,
then we have

n ≥ ρ(H) ≥

#I + 1− #I
n #I ≥ n2−2n

2n−2 ,

n
2

n2−2n
2n−2 ≥ #I.

Proof. By Lemma 3.2.1, we may without loss of generality assume that s = r, i.e.
ι(pi) = 0 and ι(D̂i

×) 6= {0} for all i ∈ [1, r]. For short, we write B = B(G,D1× . . .×Dr, ι).
By Lemma 1.2.16, we have ρ(H) = ρ(B).

1. Since B(G) ⊂ B is a divisor-closed submonoid, we have ρ(B) ≥ ρ(B(G)) = D(G)
2 , by

[14, Theorem 3.4.10.4].
2. For i ∈ I, let εi ∈ D̂i

× be such that 〈ι(εi)〉 = ι(D̂i
×). Then there is some k ∈ [0, n)

such that

a = gk
∏
i∈I

piεi ∈ A(B)

by Lemma 3.2.3. Now we calculate the elasticity of the n-th power of a. We find

an = (gk
∏
i∈I

piεi)n = (gn)k
∏
i∈I

(piεni )pn−1
i ,

where gn, piεi, pi ∈ A(B) for all i ∈ I, and thus

ρ(an) ≥ k + n#I
n

= #I + k

n
= #I + n−

∑
i∈I(G : ι(D̂i

×))
n

= #I + 1−
∑
i∈I

(G : ι(D̂i
×))

n
.

Since D(G) = n, we are done.
3. For j ∈ J , let εj ∈ D̂j

× be as in the assumption. Then we find

a =
∏
j∈J

pjεj ∈ A(B).

Now we calculate the elasticity of the n-th power of a. We find

an =

∏
j∈J

pjεj

n =
∏
j∈J

(pjεnj )pn−1
j ,
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where gn, pjεnj , pj ∈ A(B) for all j ∈ J , and thus

ρ(an) = n#J
n

= #J.

If now, in particular, #G = n ∈ P, then G has no non-trivial subgroups. Therefore
ι(D̂i

×) = G for all i ∈ [1, r], and thus we may assume that ι(pi) = 0 for all i ∈ [1, r]. Now
we apply part 2 with (G : ι(D̂i

×)) = 1 for all i ∈ I. Thus
∑
i∈I(G : ι(D̂i

×)) = #I ≤ n. For
short, we set #I = k. Now it remains to show that

max
{
k + 1− k

n
,
n

2

}
=

k + 1− k
n k ≥ n2−2n

2n−2
n
2

n2−2n
2n−2 ≥ k.

This can be seen by the following easy calculation

k + 1− k

n
≥ n

2
k(2n− 2) + 2n− n2 ≥ 0

k ≥ n2 − 2n
2n− 2 . �

Corollary 3.2.5. Let O be a non-principal locally half-factorial order in an algebraic
number field such that all localizations of O are finitely primary monoids of exponent 1
and # Pic(O) = n ∈ P. Let P∗ = {p ∈ X(O) | p ⊃ (Ō : O)} and let ι : q(O)→ Pic(O) be a
homomorphism defined by ι(t) = [t]Pic(O) for all t ∈ q(O). Let ∅ 6= I ⊂ P∗ be a non-empty
subset such that #I ≤ n and

∑
p∈I(Pic(O) : ι(̂(

×
Op))) ≤ n.

Then

n ≥ ρ(O) ≥

#I + 1− #I
n #I ≥ n2−2n

2n−2 ,

n
2

n2−2n
2n−2 ≥ #I.

Proof. Clear by Proposition 3.2.4. �

With the last example in this section, we want to illustrate which (easy) subsets of the
appearing T -block monoids are not half-factorial.

Example 3.2.6. Let D be an atomic monoid, P ⊂ D be a set of prime elements, and
T ⊂ D be an atomic submonoid such that D = F(P )× T . Let D1 ⊂ T be a divisor-closed
submonoid and D1 ⊂ [p1]× D̂1

× = D̂1 a monoid of type (1, 1). Let H ⊂ D be a saturated
atomic submonoid, G = q(D/H) its class group cyclic of order n ≥ 2, say G = 〈g〉, suppose
each class in G contain some p ∈ P , define a homomorphism ι(T )→ G by ι(t) = [t]D/H ,
and let ε ∈ D̂1

× be such that 〈ι(ε)〉 = ι(D̂1
×) 6= {0}.

Then the set
[[{gkp1ε | kg + ι(p1ε) = 0}]]

is not half-factorial.
In particular, H is not half-factorial.

Proof. Let n1 ∈ [0, n) and n′1 ∈ [1, n) be such that ι(p1) = n1g and ι(ε) = n′1g. If
n′1 = 1, we can choose p1 in such a way that n1 = 0. If n1 = 0, then the assertion follows
by the proof of Proposition 3.2.4. Since n1, n

′
1 | n we have n1, n

′
1 ≤ n

2 and therefore
n1 + n′1 ≤ n. Now we distinguish 4 cases.
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Case 1. n1 + n′1 = n. Here we have n1 = n′1 = n
2 , and therefore p2

1 ∈ A(B). Now we
consider the factorizations

(p1ε)4 = (p1ε
3)(p1ε)(p2

1)

and find 4 atoms on the left side and 3 on the right side.
Case 2. n = 4, n1 = 1, and n′1 = 2. We find

(p1εg)4 = (p1ε
4g3)(p3

1g).

These are 4 atoms on the left side and 2 on the right side.
Case 3. n = 6 and n1 + n′1 = 5. Here we find

(p1εg)6 =

(p1ε
6g3)(p1g

3)(p2
1)2 n1 = 3 and n′1 = 2,

(p1ε
6g4)(p2

1g
2)(p3

1) n1 = 2 and n′1 = 3.

These are 6 atoms on the left side and 4 respectively 3 on the right side.
Case 4. n1+n′1 < n and neither case 2 nor case 3 happens. Thus we have n−n1−n′1−1 ≥ 1
and we find

(p1εg
n−n1−n′1)n = (p1ε

ngn−n1)(pn−1
1 gn1)(gn−n1−n′1−1)n.

These are n atoms on the left side and at least n+ 2 atoms on the right side. �
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CHAPTER 4

min4(Rf) and min4(OK,f)

4.1. Extensions of discrete valuation domains

Extensions of discrete valuation domains have been studied in [21, Subsection 3.3] and
some of the results presented here can be found there, too.

Definition 4.1.1. Let A be a discrete valuation domain with prime element p, K its
quotient field, L/K a finite extension, and Ā the integral closure of A in L. (Then Ā is a semi-
local principal ideal domain. Let s ∈ N an π1, . . . , πs be a system of pairwise non-associated
prime elements of Ā. Let p = πe1

1 · . . . · πes
s ε with ε ∈ Ā× and e = (e1, . . . , es) ∈ Ns a prime

decomposition of p in Ā.) Furthermore we set R = A+ fĀ with k = (k1, . . . , ks) ∈ Ns and
f = πk1

1 · . . . · πks
s ∈ Ā and vπi : Ā• → N0 the πi-adic valuation of Ā• for i = 1, . . . , s and

vp : A• → N0 the p-adic valuation of A•. (Then we get vπi(p) = ei and vπi(f) = ki for all
i ∈ [1, s], and (R : Ā) = fĀ.) This situation (A ⊂ R = A+ fĀ ⊂ Ā) is called an extension
of a discrete valuation domain.

Proposition 4.1.2. Let R be a one-dimensional local noetherian domain with maximal
ideal m such that its integral closure R̄ is a finitely-generated R-module. (Then R̄ is a semi-
local Dedekind domain, thus a principal ideal domain.) Let s ∈ N and π1, . . . , πs ∈ R̄ be a
system of pairwise non-associated prime elements of R̄. Now we set (R : R̄) = πk1

1 ·. . .·πks
s R̄

with k1, . . . , ks ∈ N.
Then R• is a finitely primary monoid of exponent k = max{k1, . . . , ks} and of rank s.
In particular, m does not split in R̄ if and only if s = 1.

Proof. Obviously, R̄• = [π1, . . . , πs]× R̄×. Since R̄ ⊃ R is integral, we have R̄×∩R =
R× and πiR̄∩R = m for all i ∈ [1, s]. Let a = πn1

1 · . . . ·πns
s ε ∈ R̄• with n1, . . . , ns ∈ N0 and

ε ∈ R̄×. If ni ≥ k for all i ∈ [1, s], then aR̄ ⊂ (R : R̄) ⊂ R and thus a ∈ R. Now it remains
to prove: R•\R× ⊂ π1 · . . . · πsR̄•. Since π1, . . . , πs are prime elements in R̄, we have
π1R̄

•∩ . . .∩πsR̄• = π1 · . . . ·πsR̄•. Now the assertion follows from R•\R× = m\{0} ⊂ πiR̄•

for all i ∈ [1, s]. In particular, since πiR̄ ∩R = m for all i ∈ [1, s], m does not split in R̄ if
and only if s = 1. �

Definition 4.1.3. Let s ∈ N, e = (e1, . . . , es) ∈ Ns, n ∈ N, and H be a monoid of type
(e, ne).
We call H a strict monoid of type (e, n) if for all a ∈ H \H×, i ∈ [1, s], and l ∈ [1, n− 1]

vpi(a) = lei implies vpj (a) = lej for all j ∈ [1, s].

Now we can give some characterization of extensions of discrete valuation domains
leading to strict monoids of type (e, n).
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Proposition 4.1.4. Let A ⊂ R = A+ fĀ ⊂ Ā be an extension of a discrete valuation
domain A with prime element p and f ∈ A.
Then:

1. R is a noetherian one-dimensional local domain with maximal ideal pA+ fĀ.
2. R• is a monoid of type (e,k).
3. If f ∼ pn for n ∈ N, then R• is a strict monoid of type (e, n).

Proof.
1. Let ϕ : Ā→ Ā/fĀ be the canonical epimorphism. Then we find R = A+ fĀ =
ϕ−1(ϕ(A)), and thus R ⊂ Ā is a subring. By the Theorem of Krull-Akizuki, R is a
one-dimensional noetherian domain.
Let m be a maximal ideal of R. Since Ā ⊃ R is integral, we find m = πiĀ ∩R for
all i ∈ [1, s]. Now, it is sufficient to show that πiĀ ∩R = pA+ fĀ for all i ∈ [1, s].
We show R \ πiĀ ⊂ R× for all i ∈ [1, s]. Let x = a+ fy ∈ R \ πiĀ with a ∈ A and
y ∈ Ā, then a ∈ A \ πiĀ = A \ fA = A×. If we have u ∈ A with ua = 1, then
ux = 1 + fuy ∈ 1 + fĀ, and therefore, there is no maximal ideal of Ā containing
ux, and thus ux ∈ Ā× ∩R = R×.

2. By part 1, we can apply Proposition 4.1.2 and we get that R• ⊂ Ā• is a finitely
primary monoid of rank s and exponent max{k1, . . . , ks}. Let now vp : A• → N0 be
the p-adic valuation of A•. Obviously, vπi(A•) = eivp(A•) = eiN0 and vπi(fĀ•) =
N≥ki

, for all i ∈ [1, s]. Thus we find vπi(R) ⊃ eiN0 ∪ N≥ki
, for all i ∈ [1, s], and

therefore it suffices to show thor all i ∈ [1, s] that:

(a, Ā) ∈ A• × Ā• and vπi(a+ fā) < ki ⇒ vπi(a+ fā) ∈ eiN0 .

Let i ∈ [1, s] and (a, ā) ∈ A• × ā• such that vπi(a + fā) < ki. Since vπi(a +
fā) ≥ min{vπi(a), vπi(fā)} and vπi(fā) ≥ ki, we have vπi(a) < vπi(fā) and
vπi(a+ fā) = vπi(a) = eivp(a) ∈ eiN0. Thus R• ⊂ Ā• is a monoid of type (e,k).

3. Here we have k = ne. By part 2, we obtain that R• is a monoid of type (e, ne).
Now we must show the second property in Definition 4.1.3. Let a = a′ + fa′′ ∈ R•

with a′ ∈ A, a′′ ∈ Ā, and l ∈ [1, n) be such that vπ1(a) = le1. Suppose a′ = 0,
then vπ1(a) = vπ1(fa′′) ≥ k1, a contradiction. Suppose a′′ = 0, then a = a′ ∈
A• = [p]×A× and the assertion is obvious. Now we can suppose that a′, a′′ 6= 0.
Since k1 = ne1 > vπ1(a) ≥ min{vπ1(a′), vπ1(fa′′)} = min{vπ1(a′), k1 + vπ1(a′′)},
we have vπ1(a′) < vπ1(fa′′), and therefore le1 = vπ1(a) = vπ1(a′), i.e. a′ = plε

with ε ∈ A×, and thus vπj (a′) = lej for all j ∈ [1, s]. Let now j ∈ [1, s]. Then
vπj (a′) = lej < nej ≤ vπj (fa′′), thus vπj (a) = vπj (a′) = lej . �

Lemma 4.1.5. Let A ⊂ R = A+fĀ ⊂ Ā be an extension of a discrete valuation domain
A with prime element p such that Ā is a discrete valuation domain with prime element π.
Suppose that p ∼ πe and f ∼ pn, where e, n ∈ N.
Then en ∈ vπ(A(R)).

Proof. By Proposition 4.1.4.3, we have that R• ⊂ Ā• = [π]× Ā× is a strict monoid
of type (e, en). By the minimality of en (in Definition 4.1.1 or Definition 3.1.1), it is
obvious that there is α ∈ Ā× such that πlα ∈ R if and only if l ≥ en. Now assume
πenα /∈ A(R). Then there are n1, n2 ∈ [1, en) and ε1, ε2 ∈ Ā× such that πn1ε1, π

n1ε2 ∈ R
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and (πn1ε1)(πn2ε2) = πenα, i.e. n1 + n2 = en and ε1ε2 = α. Since πniεi ∈ R = A+ πenĀ,
there are ai ∈ A and āi ∈ Ā such that πniεi = πniai + πenāi for i = 1, 2. Now we find

πenα = (πn1ε1)(πn2ε2)

= (πn1a1 + πenā1)(πn2a2 + πenā2)

= πen(a1a2 + πn1a1ā2 + πn2 ā1a2 + πenā1ā2 ,

and therefore
α = a1a2 + πn1a1ā2 + πn2 ā1a2 + πenā1ā2 ,

where a1a2 ∈ A, and thus πen−min{n1,n2}α ∈ R. Since en − min{n1, n2} < en, this is
a contradiction to πlα /∈ R for l < en. Thus we have πenα ∈ A(R), and therefore
en = vp(πenα) ∈ vπ(A(R)). �

Definition 4.1.6. Let R be a Dedekind domain with quotient field K, L/K be a finite
separable field extension, let R̄ be the integral closure of R in L , and f ∈ R• \R×. Then
we set R̄f = R+ fR̄.

By the theorem of Krull-Akizuki then R̄ is a Dedekind domain and since L/K is finite
R̄ is a finitely generated R module, i.e. there are n ∈ N and r2, . . . , rn ∈ R̄ such that
R̄ = R+ r2R+ . . .+ rnR.
Obviously, R̄f is an order in R̄. Now we calculate its conductor. The inclusion fR̄ ⊂ (R̄f :
R̄) is clear. Let x = a+ fb ∈ (R̄f : R̄) ⊂ R̄f = R + fR̄ with a ∈ R and b ∈ R̄. Then we
find a = x− fb ∈ (R̄f : R̄) ∩R, and thus aR̄ ⊂ R̄f . Now we have

ar2 = g + f
n∑
i=2

lirr with g, l2, . . . , ln ∈ R.

By comparison of coefficients we find a = fl2 ∈ fR, and thus x = fl2 +fb = f(l2 +b) ∈ fR̄.
So we have (R̄f : R̄) = fR̄.

Let p ∈ X(R) and n ∈ N with f ∈ pn and f /∈ pn+1. Then the localization (R̄f )p =
Rp + pnp R̄p is an order in R̄p with conductor ((R̄r)p : R̄p) = pnp R̄p.

In the following lemma we can construct the strict monoids we will make use of in
Section 4.2.4.2.4.

Lemma 4.1.7. Let R be a Dedekind domain with quotient field K, L/K be a finite
separable field extension, let R̄ be the integral closure of R in K, f ∈ R• \ R×, and
R̄f = R+ fR̄.

1. Let p ∈ X(R), n ∈ N such that f ∈ pn and f /∈ pn+1. Let s ∈ N, π1, . . . , πs be a
complete system of pairwise non-associated prime elements of R̄p, for i ∈ [1, s], let
vπi : L• → Z be the πi-adic valuation of L•, and e = (vπ1(p), . . . , vπs(p)) ∈ Ns.
Then (R̄f )•p ⊂ R̄•p = [π1, . . . , πs]× R̄×p is a strict monoid of type (e, n).

2. Let P∗ = {p ∈ X(R̄f ) | f ∈ p} and P = X(R̄f ) \ P∗, Pic(R̄f ) be finite, and let
every class in Pic(R̄f ) contain a prime p ∈ P.
Then

(R̄•f )red ⊂ F(P)× T ∼= I∗(R̄f ) with T =
∏
p∈P∗

((R̄f )•p)red

is a saturated and cofinal submonoid with class group Pic(R̄f ) = I∗(R̄f )/(R̄•f )red.
Furthermore, for all p ∈ P∗, (R̄f )•p ⊂ R̄•p is a strict monoid.
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3. Let R = Z, K = Q, L be an algebraic number field, R̄ = OL be the integral closure
of R in L and the maximal order in L, and f ∈ Z.
Then R̄f = OL,f fulfilled the assumptions of part 2.

4. Let F be a field, K = F (t), R = F [t], L be an algebraic function field over F
such that R̄, the integral closure of R in L, is a finitely generated R-module, and
f(t) ∈ F [t].
Then R̄f(t) fulfilled the assumptions of part 2.

Proof.
1. Obvious by Proposition 4.1.4.3.
2. The main assertion follows by [14, Theorem 3.7.1]. By part 1, the additional

statement follows, since, obviously, a monoid is a strict monoid if and only if its
associated reduced monoid is a strict monoid.

3. By [14, Corollary 2.11.16], Pic(OL,f ) is finite and each class in Pic(OL,f ) contains
some p ∈ P.

4. By [14, Proposition 8.9.7], Pic(RK,f(t)) is finite and each class contains some prime
element p ∈ P. �

4.2. min4(Rf) and min4(OK,f)

4.2.1. The split case.

Lemma 4.2.1. Let H be an atomic monoid. If, for all m ≥ 2, there exists xm ∈ H such
that, for all k ∈ [0,m−1], there are atoms am,k, bm,k, cm,k ∈ A(H) with am,kbm,kckm,k = xm,
then we have

• min4(H) = 1;
• for all l ≥ 2, Vl(H) = [2,∞); and
• for all finite subsets I ⊂ N≥2 there is x ∈ H such that I ⊂ L(x).

Proof. Let m ∈ N be arbitrary. By assumption, there is xm ∈ H such that, for all
k ∈ [0,m− 1], there are atoms am,k, bm,k, cm,k ∈ A(H) with am,kbm,kckm,k = xm. Thus we
find [2,m+ 1] ⊂ L(xm), and therefore min4(H) = 1. Since m was arbitrary, we have, for
all l ≥ 2,

[2,∞) =
⋃

m≥l+1
[2,m+ 1] ⊂

⋃
m≥l+1

L(xm) ⊂ Vl(H) ⊂ [2,∞) ,

an thus equality holds. For all I ⊂ N≥2, we have I ⊂ [2,max(I)] ⊂ L(xmax(I)−1). �

Lemma 4.2.2. Let H ⊂ Ĥ = [p1, . . . , ps]× Ĥ× be a strict monoid of type (e, n) of rank
s ≥ 2 with n ∈ N.
Then we have pe1n+n1

1 · . . . · pesn+ns
s ε ∈ A(H) for all ε ∈ Ĥ× and n1, . . . , ns ∈ N0 where

ni ≥ 1 and nj < ej for some i, j ∈ [1, s].

Proof. Let n1 < e1 without loss of generality, and set a = pe1n+n1
1 · . . . · pesn+ns

s ε

with ε ∈ Ĥ×. Then a ∈ H, since pe1n
1 · . . . · pesn

s Ĥ ⊂ H. Suppose a /∈ A(H). Then
there are b, c ∈ H\H× with a = bc. Now we find nei + ni = vpi(a) = vpi(b) + vpi(c)
for i ∈ [1, s]. Since b, c /∈ H× and n1 < e1, we obtain vp1(b), vp1(c) ∈ e1N ∪ N≥e1n and
e1n > vp1(b), vp1(c) ≥ e1. Therefore, there are lb, lc ∈ [1, n) such that vp1(b) = lbe1 and
vp1(c) = lce1. We have ne1 + n1 = vp1(a) = vp1(b) + vp1(c) = (lb + lc)e1, thus n1 = 0 and
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lb + lc = n. Let i ∈ [2, n]. Since H is a strict monoid and n > lb, lc, we find vpi(b) = lbei

and vpi(c) = lcei. Now we get nei + ni = vpi(a) = vpi(b) + vpi(c) = nei, and therefore
ni = 0. This is a contradiction, because, by assumption, we have max{n1, . . . , ns} ≥ 1. �

Theorem 4.2.3. Let D be a monoid, P ⊂ D a set of prime elements, and T ⊂ D an
atomic submonoid such that D = F(P )× T . Let D1 ⊂ T be a divisor-closed submonoid
and D1 ⊂ D̂1 = [p1, . . . , ps]× D̂1

× a strict monoid of type (e, n) of rank s ≥ 2. Let H ⊂ D
be a saturated atomic submonoid, G = q(D/H) be its class group with #G ≤ 2, and let
each class in G contain a prime element of P .
Then we have

• min4(H) = 1;
• for all I ⊂ N≥2 finite there is x ∈ H such that I ⊂ L(x); and
• Vl(H) = [2,∞) for all l ≥ 2.

Proof. By Lemma 1.2.16, it suffices to show the assertion for the T -block monoid
B(G,T, ι) defined by the homomorphism ι : T → G, ι(t) = [t]D/H . For short, we write
B = B(G,T, ι) and p = pne2

2 · . . . · pnes
s . Let m ≥ 2 and k ∈ [0,m− 1].

First we study the case #G = 1. Here we have H = D and B = T . We set

am,k = pne1
1 p2m−k+1,

bm,k = p
(2m−2k+1)ne1
1 p,

cm,k = p2ne1
1 p,

By Lemma 4.2.2, we find am,k, bm,k, cm,k ∈ A(D1) and am,kbm,kckm,k = xm for k ∈ [0,m−1]
with

xm = am,kbm,kc
k
m,k

= (pne1
1 p2m−k+1)(p(2m−2k+1)ne1

1 p)(p2ne1
1 p)k

= p
ne1+(2m−2k+1)ne1+(2ne1)k
1 p2m−k+1+1+k

= (pne1
1 p)2m+2.

Since D1 ⊂ T is a divisor-closed submonoid, we have A(D1) ⊂ A(T ) = A(B).
Now let #G = 2, say G = {0, g}. Here we distinguish three cases.
If ι(pe1n

1 ) = ι(p) = 0, then we set

am,k = pe1n
1 p2m−k+1,

bm,k = p
e1n(2m−2k+1)
1 p,

cm,k = p2e1n
1 p.

By Lemma 4.2.2, we find am,k, bm,k, cm,k ∈ A(D1) ⊂ A(T ) and, since ι(am,k) = ι(bm,k) =
ι(cm,k) = 0, we find am,k, bm,k, cm,k ∈ A(B).
If ι(pe1n

1 ) = g and ι(p) = 0, then we set

a′m,k = pe1n
1 p2m−k+1,

b′m,k = p
e1n(2m−2k+1)
1 p,

cm,k = p2e1n
1 p.
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am,k = a′m,kg, and bm,k = b′m,kg. By Lemma 4.2.2, we have a′m,k, b′m,k, cm,k ∈ A(D1) ⊂
A(T ), and, since ι(am,k) = ι(bm,k) = ι(cm,k) = 0, we have am,k, bm,k, cm,k ∈ A(B).
If ι(pe1n

1 ) = 0 and ι(p) = g, then there is some j ∈ [2, s] such that ι(pejn
j ) = g and

ι(ppe1n
1 p

−ejn
j ) = 0. Thus we can assume ι(pe1n

1 ) = g and ι(p) = 0 without loss of generality.
If ι(pe1n

1 ) = ι(p) = g, then we set

a′m,k = pe1n
1 pm−k+1,

b′m,k = p
e1n(3m−3k)
1 p,

cm,k = p3e1n
1 p.

and

am,k =

a
′
m,kg k −m is odd,

a′m,k k −m is even,

bm,k =

b
′
m,kg k −m is even,

b′m,k k −m is odd.

By Lemma 4.2.2, we have a′m,k, b′m,k, cm,k ∈ A(D1) ⊂ A(T ), and, since ι(am,k) = ι(bm,k) =
ι(cm,k) = 0, we have am,k, bm,k, cm,k ∈ A(B).
In all cases we found atoms am,k, bm,k, cm,k ∈ A(B) for all m ≥ 2 and for all k ∈ [0,m− 1],
which fulfill the conditions of Lemma 4.2.1. Thus the assertions follow. �

4.2.2. The non-split cases.

Theorem 4.2.4. Let D be a monoid, P ⊂ D be a set of prime elements, and T ⊂ D be
an atomic submonoid such that D = F(P )× T . Let D1 ⊂ T be a divisor-closed submonoid
and D1 ⊂ [p]× D̂1

× = D̂1 be a monoid of type (e, en) of rank 1 with e, n ∈ N. Let H ⊂ D
be a saturated atomic submonoid, G = q(D/H) be its class group with #G ≤ 2, and let
each class in G contain some p′ ∈ P .
Suppose one of the following conditions is fulfilled.

1. e ≥ 4.
2. e = 3 and p ∈ Ĥ.
3. e = 2, p ∈ Ĥ, and there exists some a ∈ A(D1) such that vp(a) = 2n.
4. e = 1, n ≥ 2, p ∈ Ĥ ∩D1, and there exist ε, η ∈ D̂1

× such that pnε, p2η, pnεη ∈
A(D1), and [η]D/H = 0.

5. e = 1, n = 2, p ∈ Ĥ ∩D1, and there exists ε ∈ D̂1
× such that p2ε, p2ε2 ∈ A(D1).

Then we have
min4(H) = 1.

Proof. By Lemma 1.2.16, it suffices to show the assertion for the T -block monoid
B(G,T, ι) defined by the homomorphism ι : T → G, ι(t) = [t]D/H . For short, we write
B = B(G,T, ι).

1. Since e ≥ 4, we have pen+1, pen+2, pen+3 ∈ A(D1) ⊂ A(T ).
Now suppose ι(p) = 0. Then ι(pen+1) = ι(pen+2) = 0, hence pen+1, pen+2 ∈ A(B),
and the assertion follows from

(pen+1)en+2 = (pen+2)en+1.
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Now suppose ι(p) = g. We notice that e ≥ 5 if e is odd and that in this case
pen+4 ∈ A(D1) ⊂ A(T ). Now we set

i =

en+ 1 e is even,

en+ 2 e is odd.

Then pi, pi+2 ∈ A(D1) and ι(pi) = ι(pi+2) = g in all cases, and therefore pig, pi+2g,
g2 ∈ A(B). Now the assertion follows from

(pig)i+2 = (pi+2g)ig2.

2. Since e = 3, we have pen+1, pen+2 ∈ A(D1) ⊂ A(T ). Furthermore, ι(pen+1) =
ι(pen+2) = 0, hence pen+1, pen+2 ∈ A(B), and the assertion follows from

(pen+1)en+2 = (pen+2)en+1.

3. Let a ∈ A(D1) be an atom of D1 such that vp(a) = 2n. Then there is ε ∈ D̂1
×

such that a = p4nε. We have p4nε, p4n+1, p4n+1ε ∈ A(D1). Now we consider two
cases.
If ι(ε) = 0, we have ι(p4nε) = ι(p4n+1) = ι(p4n+1ε) = 0, and hence p4nε, p4n+1,

p4n+1ε ∈ A(B). Now the assertion follows from

(p4nε)4n+1p4n+1 = (p4n+1ε)4n+1.

If ι(ε) = g, we have ι(p4nεg) = ι(p4n+1) = ι(p4n+1εg) = 0, and hence p4nεg, p4n+1,

p4n+1εg ∈ A(B). Now the assertion follows from

(p4nεg)4n+1p4n+1 = (p4n+1εg)4n+1.

4. By assumption we have ι(η) = 0 and p, pnε, p2η, pnεη ∈ A(D1) ⊂ A(T ). Now we
consider two cases.
If ι(ε) = 0, then ι(pnε) = ι(p2η) = ι(pnεη) = 0, and therefore p, pnε, p2η, pnεη ∈
A(B). Thus the assertion follows from

(pnε)(p2η) = p2(pnεη).

If ι(ε) = g, then ι(pnεg) = ι(p2η) = ι(pnεηg) = 0, and therefore p, pnε, p2η,

pnεηg ∈ A(B). Thus the assertion follows from

(pnεg)(p2η) = p2(pnεηg).

5. By assumption we have p, p2ε, p2ε2 ∈ A(D1) ⊂ A(T ) and ι(ε) = 0. Thus ι(p2ε) =
ι(p2ε2) = 0 and we find p, p2ε, p2ε2 ∈ A(B). Now the assertion follows from

p2(p2ε2) = (p2ε)2. �

4.2.3. min4((OK,f)(p)) for local quadratic inert orders.
This subsection heavily relies on the calculations in [17]. First, we fix some notations.
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4.2.3.1. Notations. Let d ∈ Z\{0, 1} be square-free. Then K = Q(
√
d) is a quadratic

number field. Let p ∈ P be a prime, such that p is inert with respect to K. Set

ω =


3+
√
d

4 if d ≡ 1 mod 4 and p = 2,
√
d else.

Then Z(p)[ω] = (OK)(p) is the integral closure of Z(p) in K and at the same time it is the
localization of K’s ring of integers OK .
Now let n ∈ N. (OK,pn)(p) is the local order or equivalently the Z(p)-order in (OK)(p) with
conductor ((OK,pn)(p) : (OK)(p)) = pn(OK)(p). Then (OK,pn)(p) = Z(p)[pnω] = Z(p)[τ ] with

τ =

2n−1√d if d ≡ 1 mod 4 and p = 2,
√
d else.

Since p is inert in K, we have
(
d
p

)
= −1.

We now fix n and p and we write R̄ = (OK)(p) and R = (OK,pn)(p) for short.
For m ∈ N and c ∈ R, we write um,c = pmc + τ and for M ∈ N we set Ω(M) = {c ∈
[0, pm − 1] | c+ τ ∈ R\(R× ∪ pR), N (c+ τ) ∼ pm}.

Remark 4.2.5. If we look at a local order (OK,f )(p) with f ∈ N≥2, then we have
(OK,f )(p) = (OK,pn)(p) where n ∈ N such that pn | f and pn+1 - f . Thus we will write
(OK,pn)(p) instead of (OK,f )(p) form now on.

4.2.3.2. The monoid R•.
By Lemma 4.1.7.3 R• ⊂ R̄• is a strict monoid of type (1, n) of rank n. Thus it is clear that
ρ(R) ≤ n and it is a well known fact that ρ(R) = 1 if and only if n = 1.

4.2.3.3. The two possible cases.

• p 6= 2
• p = 2

4.2.3.4. Case p 6= 2.
This case is discussed in detail in [17]. Here we give only a brief summary of the results.
Complete system of pairwise not-associated atoms

type (a) p

type (b) um,c with m ∈ [1, n− 1], c ∈ [0, pm − 1], p - c
type (c) un,c with c ∈ [1, pn − 1]

Let un,c be an atom of type (c) and set pkc1 = c with k ∈ N0. Then we have un,c = un+k,c1 .
Since c ∈ [1, 2n − 1], we find k ∈ [0, n − 1] and c1 ∈ [1, pn−k − 1]. Each k ∈ [0, n − 1]
appears.
Relations among these atoms

Lemma 4.2.6. Let j ∈ [1, n− 1] and c ∈ [0, pn−j − 1] with p - c. Let c0 ∈ Z be such that
p - c0 and (

d− cc0
p

)
= 1.

Then there exists some c1 ∈ [0, pn−j − 1] such that

c2
1 − pjc0c1 ≡ d− cc0 mod pn−j .
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If c1 is chosen in this way and if c2 ∈ [0, pn−j − 1] satisfies c2 ≡ pjc0 − c1 mod pn−j, then
choose any c3 ∈ [0, pn − 1] with p - c3(c3 − c1) and let c4 ∈ [0, pn − 1] be such that

c4 ≡
c1c3 − d
c3 − c1

mod pn.

Then we have
p4n+jun−j,c ∼ un,c2un,c3un,c4 .

Proof. By [17, Lemma 0.5], it follows that

un,c3un,c4 ∼ pnun,c1

and, by [17, Lemma 0.6], we find

un,c1un,c2 ∼ pn+jun−j,c.

Now we can combine those results to obtain

un,c2un,c3un,c4 ∼ pnun,c1un,c2 ∼ p4n+jun−j,c. �

Unions of sets of lengths
By [17, Lemma 0.7.2], there is x ∈ R such that [2, 3] ∈ L(x). By [17, Lemma 0.6], we have
m+ j+ 1 ⊂ V2(R) for all m ∈ [1, n] and j ∈ [1,m− 1]. Thus we have [4, 2n] ⊂ V2(R). Now
we find

[2, 2n] = [2, 3] ∪ [4, 2n] ⊂ V2(R) ⊂
[
max

{
2,
⌈ 4
n

⌉}
, 2n

]
= [2, 2n]

Since [2, 2n] = V2(R), we have [2, 2n+ 1] ⊂ V3(R). By Lemma 4.2.6, we have 2n+ j + 1 ∈
V3(R) for all j ∈ [1, n− 1], and therefore [2n+ 2, 3n] ⊂ V3(R). Now we find

[2, 3n] ⊂ V3(R) ⊂
[
max

{
2,
⌈ 5
n

⌉}
, 3n

]
= [2, 3n].

4.2.3.5. Case p = 2.
Since 2 is inert, i.e.

(
d
2

)
= −1, we have d ≡ 5 mod 8, thus d ≡ 1 mod 4.

The sets Ω(M)
By [17, Lemma 0.4 B], we have

Ω(M) =



∅ M < 2n and M ≡ 1 mod 2,

{2mc0|c0 ∈ [0, 2m − 1], 2 - c0} M + 2m with m ∈ [1, n− 2],

{2nc1|c1 ∈ [0, 2n−2 − 1]} M = 2n− 2,

{2n−1c0|c0 ∈ [0, 2n+1 − 1] 2 - c0} M = 2n,

∅ M > 2n.

Complete system of pairwise not-associated atoms

type (a) 2,

type (b) um,c with m ∈ [1, n− 2], c ∈ [2m − 1], 2 - c,

type (c) un−1,c with c ∈ [0, 2n+1 − 1], 2 - c,

type (d) un,c with c ∈ [0, 2n−2 − 1].

Let un,c be an atom of type (d) and set pkc1 = c for k ∈ N0. Then we have un,c = un+k,c1 .
Since c ∈ [1, 2n−2 − 1], we find k ∈ [0, n− 3] and c1 ∈ [1, pn−k−2 − 1]. Each k ∈ [0, n− 3]
appears.
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Relations among these atoms
More or less the same as in the case p 6= 2.
Unions of sets of lengths

V2(R) = [2, 2n] and V3(R) = [2.3n].

4.2.3.6. Unions of sets of lengths (all cases).

Lemma 4.2.7. Let H be an atomic monoid and e ∈ N minimal such that eρ(H) ∈ N.
If, for all k ∈ [2,max{3, e+ 1}],

(4.2.1) Vk(H) =
[
max

{
2,
⌈

k

ρ(H)

⌉}
, bkρ(H)c

]
is satisfied, then (4.2.1) holds for all k ≥ 2.

Proof. For short, we set n = ρ(H). Suppose now e = 1. In this case, we prove
the assertion by induction on k. Let k ≥ 4 and suppose the assumption is true for all
2 ≤ k′ < k. Let l, l′ ∈ N0 be such that k = 2l + 3l′. Then we have

[2(l + l′), kn] = [2(l + l′), (2l + 3l′)n] = lV2(H) + l′V3(H) ⊂ Vk(H).

It remains to show that [
max

{
2,
⌈
k

n

⌉}
, 2(l + l′)− 1

]
⊂ Vk(H).

Let k′ ∈
[
max

{
2,
⌈
k
n

⌉}
, 2(l + l′)− 1

]
. Then we find

k

n
≤ k′ ≤ 2(l + l′)− 1 < 2(l + l′)′ ≤ 2l + 3l′ = k,

and therefore k′n ≥ k > k′. By induction hypotheses, it follows that k ∈ Vk′(H), and
therefore k′ ∈ Vk(H).
Now suppose e > 1. Then we have max{2, e+ 1} = e+ 1 and we prove the assertion again
by induction on k. Let k ≥ e+ 2 and suppose the assertion is proven for k′ < k. k has a
unique decomposition of the form k = ek′ + k′′ with k′ ∈ N and k′′ ∈ [2, e+ 1]. We have
k′Ve(H) + Vk′′(H) ⊂ Vk(H). Since en ∈ N, we have bknc = b(k′e+ k′′)nc = k′en+ bk′′nc,
and therefore [k, bknc] = [k′e, e′en] + [k′′, bk′′, bk′nc] ⊂ Vk′e(H) + Vk′′(H) ⊂ Vk(H). It
remains to show that

M =
[
max

{
2,
⌈
k

n

⌉}
, k

)
⊂ Vk(H).

Let k′ ∈M . Then
k

n
≤ k′ < k,

and therefore k′ < k ≤ k′n. Since k ∈ N, we have k ≤ bk′nc, and therefore we have
k ∈ Vk′(H), i.e. k′ ∈ Vk(H) by induction hypothesis. �

Corollary 4.2.8. Let k ∈ N≥2. Then

Vk(R) =
[
max

{
2,
⌈
k

n

⌉}
, kn

]
.

Proof. Follows from V2(R) = [2, 2n] and V3(R) = [2, 3n] by Lemma 4.2.7 since
ρ(R) = n ∈ N. �
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4.2.4. The theorems on min4(Rf) and on min4(OK,f).

Theorem 4.2.9. Let R be a Dedekind domain with quotient field K, L/K be a finite
separable field extension, let R̄ = clK(R), f ∈ R• \ R×, R̄f = R + fR̄, let each class in
Pic(R̄f ) contain a prime, and set P∗ = {p ∈ X(R̄f ) | f ∈ p}.

1. If some p ∈ P∗ splits in R̄, then:
• For all finite subsets I ⊂ N≥2 there is some a ∈ I∗(R̄f ) such that I ⊂ L(a).

In particular, Vl(I∗(R̄f )) = [2,∞) for all l ≥ 2.
• If, additionally, # Pic(R̄f ) ≤ 2, then, for all finite subsets I ⊂ N≥2, there is

some a ∈ R̄f such that I ⊂ L(a).
In particular, Vl(R̄f ) = [2,∞) for all l ≥ 2.

2. If one of the conditions
(a) # Pic(R̄f ) ≥ 3,
(b) some p ∈ P∗ splits in R̄, or
(c) some p ∈ P∗ has ramification index ≥ 4 in R̄

holds, then min4(R̄f ) = 1.
If (b) or (c) holds, then we have additionally min4(I∗(R̄f )) = 1.

In particular, we can choose R = Z, K = Q, L an algebraic number field, R̄ = OL = clL(R),
and f ∈ Z• \ Z× or R = F [t] with F a field, K = F (t), L be an algebraic function field
over F such that R̄ = clL(R) is a finitely generated R-module, and f(t) ∈ F [t]• \ F×.

Theorem 4.2.10. Let K be an algebraic number field, f ∈ N≥2, P∗ = {p ∈ P | p | f}.

1. If some p ∈ P∗ splits in OK , then:
• For all finite subsets I ⊂ N≥2, there is some a ∈ I∗(OK,f ) such that I ⊂ L(a).

In particular, Vl(I∗(OK,f )) = [2,∞) for all l ≥ 2.
• If, additionally, # Pic(OK,f ) ≤ 2, then, for all finite subsets I ⊂ N≥2, there is

some a ∈ OK,f such that I ⊂ L(a).
In particular, Vl(OK,f ) = [2,∞) for all l ≥ 2.

2. If either
(a) # Pic(OK,f ) ≥ 3,
(b) there is p ∈ P∗ which splits in OK ,
(c) there is p ∈ P∗ which has ramification index ≥ 4 in OK ,
(d) there is p ∈ P∗ and p ∈ spec(OK) with p ∩ OK,f = pOK,f such that p is a

principal ideal (in OK) and (OK,f )(p) is not half-factorial, or
(e) OK,f is locally half-factorial,

then min4(OK,f ) ≤ 1.
If (b),(c), or (e) holds, then we have additionally min4(I∗(OK,f )) ≤ 1.

In particular, if (e) holds, then min4(I∗(OK,f )) = 0.

Proof of Theorem 4.2.9. In the whole proof we use the results from Lemma 4.1.7.2
without any further reference. The additional result follows immediately by Lemma 4.1.7.3
and by Lemma 4.1.7.4.

1. Let p ∈ P∗ split in R̄. Now we apply Theorem 4.2.3 with H = D = I∗(R̄f ),
therefore #q(D/H) = 1, and D1 = ((R̄f )•(p))red to obtain the assertion for I∗(R̄f ).
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If # Pic(R̄f ) ≤ 2, we can apply Theorem 4.2.3 a second time with H = (R̄•f )red to
obtain the assertion for R̄f .

2. (a) Let # Pic(R̄f ) ≥ 3. If we apply Lemma 1.2.17.1 with H = R̄•f ⊂ D = I∗(R̄f ),
we find min4(R̄f ) = 1.

(b) In this particular case the assertion follows from part 1.
(c) Let p ∈ P∗ be a prime which does not split in R̄ (otherwise everything is

proven in (b)) and which has ramification index ≥ 4 in R̄. We can apply
Theorem 4.2.4.1 with H = D = I∗(R̄f ) and D1 = ((R̄f )•(p))red. Then we get
min4(I∗(R̄f )) = 1. If # Pic(R̄f ) ≥ 3, we have min4(R̄f ) = 1 by (a). So
now we can assume # Pic(R̄f ) ≤ 2. Hence, we can apply Theorem 4.2.4.1 a
second time with H = (R̄•f )red and we find min4(R̄f ) = 1. �

Proof of Theorem 4.2.10.

1. Follows from Theorem 4.2.9.1.
2. We show min4(I∗(OK,f )) ≤ 1 and min4(OK.f ) ≤ 1 for each of the conditions

(a)-(e). In all cases but (a) we assume # Pic(OK,f ) ≤ 2. The cases (a)-(c) follow
from the corresponding cases in Theorem 4.2.9.2. So now we only have to deal
with (d) and (e).
(d) Let p ∈ P∗ be a prime such that there is p ∈ spec(OK) with p ∈ OK,f = pOK,f

that is a principal ideal (in OK). Therefore [p]Pic(OK,f ) = [p]OK/OK,f
= 0.

If p splits in OK we are in the situation of (b) and if p has ramification
index ≥ 4 we are in the situation of (c). Therefore we may without loss of
generality assume that p does not split in OK and that p has ramification
index e ∈ {1, 2, 3}. Now we do the proof case by case.
If e = 3, then we can apply Theorem 4.2.4.2 with D = I∗(OK,f ), D1 =
((OK,f )•(p))red and H = I∗(OK,f ) respectively H = (O•K,f )red. Then we get
min4(I∗(OK,f )) ≤ 1 respectively min4(OK,f ) ≤ 1.
If e = 2, then let n ∈ N be such that pn | f and pn+1 - f . Let p ∈ X(OK) be a
prime ideal such that p∩OK,f = pOK,f and p = p̄OK . By Lemma 4.1.5 we find
an atom a ∈ A(((OK,f )•(p))red) such that vp̄(a) = 2n. Now the assertion follows
by Theorem 4.2.4.3 with D = I∗(OK,f ), D1 = ((OK,f )•(p))red, H = I∗(OK,f ),
and H = O•K,f for I∗(OK,f ) respectively for OK,f .
If e = 1, then we set n ∈ N such that pn | f and pn+1 - f . By Proposition 4.1.4.2
(OK,f )•(p) is a monoid of type (1, n). If n = 1, then (OK,f )(p) is half-factorial –
a contradiction. Thus we can assume n ≥ 2.
First we deal with n ≥ 3. By Lemma 4.1.5 there is a ∈ A(((OK,f )•(p))red) such
that a = pnα with α ∈ (((OK)(p))red)× We set H, D, and D1 as before. Now
we can apply Theorem 4.2.4.4 with ε = α and η = 1+pn−2α if [η]Pic(OK,f ) = 0.
Otherwise we can set η = (1 + pn−2α)2.
Now let n = 2 and k = [K : Q]. For all α ∈ (OK)×(p)\(Z(p)) + p(OK)×(p)) =
(OK,p)×(p) we have p2α ∈ A((OK,f )(p)) (This follows immediately from the
proof of Lemma 4.1.5.).
A relation of type

p2α2 = p(pα2) or (p2α2) = (pβ)(pγ)

— 80 —



4.2. min4(Rf ) AND min4(OK,f )

with β, γ ∈ (OK,p)×(p) is equivalent to ᾱ2 ∈ F×p (̄ : (OK)(p) → Fpk is the
canonical mapping). But this cannot be the case for all elements since

#F×
pk = pk − 1 > 2(p− 1) = 2#F×p

for all p ∈ P and k ≥ 2. Thus there is α ∈ (OK)×(p) such that p2α, p2α2 ∈
A((OK,f )(p)). Now we can apply Theorem 4.2.4.5 if [α]Pic(OK,f ) = 0.
If [α]Pic(OK,f ) = g, then we consider α2 and α4 instead. For k ≥ 3, the
inequality

#F×
pk = pk − 1 > 4(p− 1) = 4#F×p

holds for all p ∈ P. Thus the assertion follows again by Theorem 4.2.4.5.
If k = 2, we reuse the explicit calculations from subsection 4.2.3. The atoms
in [17, Lemma 0.5] can be chosen globally. Thus the assertion follows.

(e) In this particular case the assertion follows from Corollary 3.1.21.2. �
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5. S. T. Chapman, P. A. Garćıa-Sánchez, and D. Llena, The catenary and tame degree of numerical
monoids, Forum Math. 21 (2009), no. 1, 117–129. MR 2494887 (2010i:20081)
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