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On the Olson and the Strong Davenport constants
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Résumé. Soit S un sous-ensemble d’un groupe abélien fini, noté
additivement. Si 0 n’est pas une sous-somme (non vide) de S,
on dit que S est un ensemble sans sous-somme nulle. Nous ex-
aminons la cardinalité maximale d’un ensemble sans sous-somme
nulle, c’est-à-dire la (petite) constante d’Olson. Nous déterminons
la cardinalité maximale d’un tel ensemble pour plusieurs types de
groupes; en particulier, les p-groupes dont le rang est suffisament
grand relativement à l’exposant et plus particulièrement tous les
groupes dont l’exposant est au plus 5. Nous obtenons ces résultats
comme des cas particuliers de résultats plus généraux, donnant
des bornes inférieures pour la cardinalité d’un ensemble sans sous-
somme nulle pour des groupes variés. Nous examinons la qualité
de ces bornes en considérant des cas explicites, avec l’aide d’un
ordinateur. De plus, nous examinons une notion très proche de la
constante d’Olson: la cardinalité maximale d’un ensemble mini-
mal de somme nulle, c’est-à-dire la constante de Davenport forte.
En particulier, nous déterminons la valeur de cette constante pour
les p-groupes élémentaires dont le rang est au plus 2, en utilisant
des résultats récents sur la constante d’Olson.

Abstract. A subset S of a finite abelian group, written addi-
tively, is called zero-sumfree if the sum of the elements of each
non-empty subset of S is non-zero. We investigate the maximal
cardinality of zero-sumfree sets, i.e., the (small) Olson constant.
We determine the maximal cardinality of such sets for several new
types of groups; in particular, p-groups with large rank relative
to the exponent, including all groups with exponent at most five.
These results are derived as consequences of more general results,
establishing new lower bounds for the cardinality of zero-sumfree
sets for various types of groups. The quality of these bounds is
explored via the treatment, which is computer-aided, of selected
explicit examples. Moreover, we investigate a closely related no-
tion, namely the maximal cardinality of minimal zero-sum sets,
i.e., the Strong Davenport constant. In particular, we determine
its value for elementary p-groups of rank at most 2, paralleling and
building on recent results on this problem for the Olson constant.
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1. Introduction

A subset S of a finite abelian group (G,+, 0) is called zero-sumfree if the
sum of the elements of each non-empty subset of S is not the zero-element
of G. And, a set S is said to have a (non-empty) zero-sum subset if it is
not zero-sumfree.

It is a classical problem, going back to Erdős and Heilbronn [9], to de-
termine the smallest integer `G such that each subset S of G with |S| ≥ `G
has a zero-sum subset; or, equivalently (the values of course differ by 1) to
determine the maximal cardinality of a zero-sumfree set. Now, it is quite
common to call this `G the Olson constant of G, denoted O(G); this name
was introduced by Ordaz, in 1994 during a seminar held at the Universi-
dad Central de Venezuela (Caracas), as a tribute to Olson’s works on this
subject [24, 25]; for the first appearance of this name in print see [6].

Erdős and Heilbronn [9] conjectured that there exists an absolute con-

stant c such that O(G) ≤ c
√
|G|. This was proved by Szemerédi [31],

and Olson [24] gave early results on the refined problem of determining a
good (or optimal) value of the constant c; he obtained c = 3. Consider-
ably later, Hamidoune and Zémor [20] improved this estimate to O(G) ≤√

2
√
|G| + ε(|G|) where ε(x) is O( 3

√
x log x), which is optimal up to the

error-term as an example for cyclic groups shows. Indeed, Subocz [30] con-
jectured that among all finite abelian groups of a given order the Olson
constant is maximal for the cyclic group of that order.

In addition to the problem of determining O(G), Erdős and Heilbronn
[9] also suggested the related problem of determining the smallest integer
`′G such that for each subset S of G \ {0} with |S| ≥ `′G every element of G
can be written as a non-empty sum of elements in S, i.e., S is a complete
subset of G. This `′G is called the critical number of G, denoted by cr(G).
From the very definition, it follows that O(G) ≤ cr(G). Combining many
contributions, the precise value of the critical number is now known for
every finite abelian gorup; we refer to the recent paper by Freeze, Gao,
and Geroldinger [10], solving the last open case, for a detailed presentation
of the various contributions leading to this result. Yet, while for groups of
prime order O(G) and cr(G) are fairly closely related—in this case, they are

equal to
√

2
√
|G|+O(1) and 2

√
|G|+O(1), respectively—they differ very

significantly in case |G| has small factors. We only recall that for composite
|G|, the quantity |G|/p + p − 2, where p is the smallest prime divisors of
|G|, is a lower bound for cr(G), which is sharp in most cases.

Concerning precise values of O(G), Deshouillers and Prakash [8] and
Nguyen, Szemerédi, and Vu [21] recently determined it for prime-cyclic
groups of sufficiently large order, and, subsequently, Balandraud [4] ob-
tained this result for all prime-cyclic groups (for the precise value cf. Sec-
tion 4). Moreover, Gao, Ruzsa, and Thangadurai [14] proved O(Cp⊕Cp) =
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(p− 1) + O(Cp) for sufficiently large prime p (namely, p > 4.67× 1034 and
this was improved to p > 6000 by Bhowmik and Schlage-Puchta [2]). In
combination, with the above mentioned results on O(Cp) the exact value of
O(Cp ⊕Cp) is thus also known for large primes. In addition, they asserted
that

(1.1) O(Crn) ≥ (n− 1) + O(Cr−1
n ).

For p-groups of large rank (relative to the exponent) Gao and Geroldinger
[11] proved that the Olson constant is equal to the Davenport constant
(see Section 2 for the definition) in contrast to the above mentioned results
where the Olson constant is considerably smaller than the Davenport con-
stant; in particular, for q a prime power and r ≥ 2q + 1, it is known that
O(Crq ) = 1 + r(q − 1) = (r − 1)(q − 1) + q. In addition, it is known that
for r ≥ 2n+ 1, we have O(Crn) ≥ 1 + r(n− 1) = (r − 1)(n− 1) + n. More-
over, Subocz [30] determined the value of the Olson constant for groups of
exponent at most three.

In addition, recently Nguyen and Vu [23] obtained, as a consequence
of a result on the structure of incomplete sets—this includes zero-sumfree
sets—in elementary p-groups, that

O(C3
p) ≤ (2 + ε)p

for each ε > 0 and prime p ≥ pε; the very recent work of Bhowmik and
Schlage-Puchta [3] on the structure of zero-sumfree sequences in Crp allows
them to obtain such results, too. This shows that equality in (1.1) holds
at least ‘almost’ for r = 3 and large primes.

The results of [11, Section 7], on the one hand, show that for n a prime
power and r large relative to q equality always holds in (1.1). On the
other hand, as pointed out in [12, Section 10], they also show that equality
cannot always hold in (1.1), as this would imply O(Cn) ≥ n, which is not
true except for n ∈ {1, 2}. A problem that remained open up to now is
whether or not equality in (1.1) holds at least for all sufficiently large primes
for fixed (small) r > 2, say r = 3.

We briefly discuss the contributions of this paper. In this initial dis-
cussion, we focus on our contributions for the important special case of
(elementary) p-groups; our actual investigations are carried out in greater
generality.

On the one hand, we determine the precise value of the Olson constant
for a larger class of p-groups with large rank; roughly, we can replace the
condition r ≥ 2q + 1 mentioned above by r ≥ q (note that neither the
results of [11] nor ours are limited to homocyclic groups, for our precise
result see in particular Corollary 5.5 and Theorem 7.3; note in our results
we use SD1(G) to denote O(G), for details see Section 3).
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On the other hand, we obtain a lower bound for O(Crp) for any rank—and
various other types of groups—that ‘smoothly’ interpolates between the two
extreme scenarios r ≥ p and r ≤ 2, improving on the existing lower bound
for the case of ‘medium size’ rank (see, in particular, Corollary 5.4 and again
Theorem 7.3); the only lower bound known is the one obtained by repeated
application of (1.1) in combination with the bound for cyclic groups, which
approximately yields for Crn the lower bound (r− 1)(n− 1) +

√
2n while we

obtain approximately (r − 1)(n− 1) + min{r, n}+
√

max{0, 2(n− r)}. In
particular, our construction offers an explanation for the difference between
the case of large rank and small rank groups, and shows that equality in
(1.1) fails to hold (already) for r = 3 for all but finitely many primes
(possibly for all but the prime 2).

In addition to the Olson constant we investigate a closely related but dis-
tinct constant called the Strong Davenport constant (introduced by Chap-
man, Freeze, and Smith [5]). We determine its exact value for several new
types of p-groups, including groups of the form Cp and C2

p (see Section 6)
as well as groups with large rank (see Corollary 5.5).

Indeed, recasting the problem of determining the Olson constant in a
suitable way allows to investigate these two constant in a unified way. We
defer a detailed discussion of the Strong Davenport constant to Section 3.

2. Preliminaries

For clarity, we fix our notation regarding standard notions, and introduce
and recall some specific terminology and notation. In particular, we give
a detailed account of all notations related to sets and sequences as our
notation regarding ‘sets’ is somewhat unorthodox, yet convenient for the
present context.

2.1. General notation. We denote by N and N0 the positive and non-
negative integers, resp. We denote by [a, b] = {z ∈ Z : a ≤ z ≤ b} the
interval of integers.

We use additive notation for abelian groups. For n ∈ N, let Cn denote a
cyclic group of order n. Let G be a finite abelian group. Then, there exist
uniquely determined integers 1 < n1 | · · · | nr such that G ∼= Cn1⊕. . .⊕Cnr .
We denote by exp(G) = nr (except for |G| = 1, where the exponent is 1)
the exponent of G and by r(G) = r the rank of G. Moreover, for a prime
p, let rp(G) = |{i ∈ [1, r] : p | ni}| denote the p-rank of G. Moreover, we set
D∗(G) =

∑r
i=1(ni − 1) + 1.

We call a group elementary if its exponent is squarefree, a p-group if
the exponent is a prime power, and homocyclic if it is of the form Crn for
r, n ∈ N. For an element g ∈ G, we denote by ord(g) its order. For d ∈ N,
we denote by G[d] ⊂ G the subgroup of elements of order dividing d.
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2.2. Sequences and sets. It is now fairly common (see, e.g., [12, 15,
17]) to consider sequences—in the context of the problems considered in
the present paper—as elements of F(G) the, multiplicatively written, free
abelian monoid with basis G. Note that the terms are not ordered; this is
irrelevant—indeed desirable—for the problems considered here. We denote
the identity element of F(G) by 1 and call it the empty sequence. We
refer to a divisor T | S as a subsequence, which is compatible with usual
intuition regarding this term, and we use the notation T−1S to denote the
unique sequence fulfilling T (T−1S) = S, which can be interpreted as the
sequence where the terms appearing in T are removed (taking multiplicity
into account). Of course, every map f : G → G′, for finite abelian groups
G and G′, can be extended in a unique way to a monoid homomorphism
fromF(G) toF(G′), which we also denote by f . For h ∈ G, let sh : G→ G
be defined via g 7→ g+ h. For h ∈ G and S ∈F(G), let h+ S = sh(S), i.e.,
the sequence where each term is ‘shifted’ by h.

Let S ∈ F(G), i.e., S =
∏
g∈G g

vg with vg ∈ N0 and there exist up to
ordering uniquely determined g1, . . . , g` ∈ G such that S = g1 . . . g`. We

denote by |S| = ` the length, by σ(S) =
∑`

i=1 gi the sum, by supp(S) =
{g1, . . . , g`} = {g ∈ G : vg > 0} the support of S. Moreover, we denote
for g ∈ G, by vg(S) = vg the multiplicity of g in S and by h(S) =
max{vg(S) : g ∈ G} the height of S.

We denote by Σ(S) = {σ(T ) : 1 6= T | S} the set of subsums of S.
We call S zero-sumfree if 0 /∈ Σ(S), and we call it a zero-sum sequence if
σ(S) = 0. A minimal zero-sum sequence is a non-empty zero-sum sequence
all of whose proper subsequences are zero-sumfree.

We denote the set of zero-sumfree sequences by A∗(G) and the set of
minimal zero-sum sequences byA(G).

As mentioned in the introduction, we are mainly interested in zero-
sumfree sets and minimal zero-sum sets. However, for our investigations it
is crucial to allow for a seamless interaction of ‘sets’ and ‘sequences’, and
to consider sequences with various restrictions on the multiplicities of the
terms.

To formalize this, we introduce the following terminology. Let G be a
finite abelian group and S ∈F(G). For ` ∈ N0, let

cm`(S) =
∑
g∈G

max{0, vg(S)− `}

the cumulated multiplicity of level `. We have cm0(S) = |S| and cm1(S) =
|S|− | supp(S)|. The most important case for our purpose is the case ` = 1,
thus we often simply write cm(S) for cm1(S) and call it the cumulated
multiplicity.
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We set kF `(G) = {S ∈F(G) : cm`(S) ≤ k}. Moreover, we set kA`(G) =
kF `(G) ∩A(G), and kA∗`(G) = kF `(G) ∩A∗(G). Again, if we do not write
the index `, we mean ` = 1.

In all formal arguments, rather than subsets of G we consider elements
of 0F(G) = 0F1(G), and use all notations and conventions introduced for
sequences (in the sense of the present paper). In other words, sets are
interpreted as squarefree sequences.

We end the preliminaries, by recalling the definition of and some results
on the Davenport constant, which though not the actual subject of our
investigations is of considerable relevance for our investigations (for detailed
information see, e.g., [12, Section 3]).

The Davenport constant of G, denote D(G), is typically defined as the
smallest integer `G such that each sequence S ∈F(G) with |S| ≥ `G satisfies
0 ∈ Σ(S), i.e., has a non-empty zero-sum subsequence. Equivalently, it can
be defined as max{|S| : S ∈A(G)}, i.e., as the maximal length of a minimal
zero-sum sequence. Though, this is easy to see and very well-known, it is a
non-trivial assertion; indeed, the set-analog (cf. Section 3) and the analog
assertions when restricted to sequences over subsets of G are well-known
to be not true. Moreover, the small Davenport constant, denoted d(G), is
defined as max{|S| : S ∈A∗(G)}, i.e., the maximal length of a zero-sumfree
sequence. It is easy to see that D(G) = d(G) + 1 and D(G) ≥ D∗(G).
Moreover, for several types of groups it is known that D(G) = D∗(G); in
particular, this is true for G a p-group and for G a group of rank at most 2.
In addition, it is conjectured that this equality also holds for groups of rank
three and homocyclic groups. However, it is well-known that this equality
does not always hold (cf. [12, Section 3]).

3. The invariants

In this section, we recall and introduce the invariants to be studied in
the present paper; in Section 4 we further generalize one of these notions,
yet we defer this for the clarity of the exposition. In addition we recall and
derive some general properties of these invariants. The main motivation
for introducing these new invariants is that we need them to formulate our
arguments regarding the classical invariants in an efficient way.

Definition 3.1. Let G be a finite abelian group and k ∈ N0 ∪ {∞}.
(1) We denote by SDk(G) = max{|S| : S ∈ kA(G)} the maximal length

of a minimal zero-sum sequence with cumulated multiplicity (of level
1) at most k; we call it the k-th Strong Davenport constant.

(2) We denote by ok(G) = max{|S| : S ∈ kA∗(G)} the maximal length of
a zero-sumfree sequence with cumulated multiplicity at most k; we
call it the k-th small Olson constant.
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(3) We denote by Ok(G) the smallest integer `G such that each S ∈ kF(G)
with |S| ≥ `G has a non-empty zero-sum subsequence; we call it the
k-th Olson constant.

Since the elements of 0F(G) are effectively sets, SD0(G) and o0(G) are
the maximal cardinality of a minimal zero-sum set and zero-sumfree set,
respectively. That is, the 0-th [small] Olson constant is the classical [small]
Olson constant, while the 0-th Strong Davenport constant is the classical
Strong Davenport constant, denoted SD(G). The notion Strong Davenport
constant was introduced in [5] (and further investigated in [1, 26]; yet note
that in [7] different terminology is used). To be precise, the definition for
the Strong Davenport constant given in [5] is max{| supp(S)| : S ∈A(G)},
i.e., the maximal number of distinct elements appearing in a minimal zero-
sum sequence, and it is proved (see [5]) that this quantity is always equal
to SD0(G) as defined here—it is now common to use the definition recalled
here rather than the original equivalent one (cf., e.g., [12, Section 10]).

It is known that, in contrast to the situation for the Davenport constant,
SD(G) does not necessarily equal O(G); it is however known that O(G)−1 ≤
SD(G) ≤ O(G) (see [1, 26]).

First, we collect some facts on the just defined invariants, and then we
establish a relation among them that in fact shows that it is sufficient to
consider the invariants SDk(G); to highlight the connection to the classi-
cal problem and since it is useful in certain arguments, we nevertheless
introduce the higher-order Olson constants.

Lemma 3.2. Let G be a finite abelian group and k, j ∈ N0 ∪ {∞}.
(1) Ok(G) = ok(G) + 1.
(2) ok(G) = d(G) for k ≥ d(G)−1, and SDk(G) = D(G) for k ≥ D(G)−1.

In particular, o∞(G) = d(G) and SD∞(G) = D(G).
(3) If k ≤ j, then ok(G) ≤ oj(G) and SDk(G) ≤ SDj(G). In particular,

ok(G) ≤ d(G) and SDk(G) ≤ D(G).

Proof. 1. From the very definitions we get Ok(G) > ok(G) and Ok(G)−1 ≤
ok(G).
2. For each non-empty sequence S, we have cm(S) ≤ |S|−1. Thus, for each
non-empty S ∈ A∗(G) we have cm(S) ≤ d(G) − 1 and for each S ∈ A(G)
we have cm(S) ≤ D(G)− 1. Hence, under the respective assumption on k,
we have kA(G) =A(G) and kA∗(G) =A∗(G), and the claim follows by the
definitions. The additional statement is now obvious.
3. For k ≤ j, we have kA∗(G) ⊂ jA∗(G) and kA(G) ⊂ jA(G), and the claim
follows. Using 2, the additional claim follows. �

Now, we link the Strong Davenport constants and the Olson constants,
and establish an additional bound; an important special case is established
in [1, 26].
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Lemma 3.3. Let G be a finite abelian group and k ∈ N0 ∪ {∞}.
(1) Ok(G) = SDk+1(G).
(2) ok+1(G) ≤ ok(G) + 1.
(3) SDk+1(G) ≤ SDk(G) + 1.

Proof. 1. Let S ∈ kA∗(G). Then, −σ(S)S is a minimal zero-sum sequence
and cm(−σ(S)S) ≤ 1 + cm(S) ≤ k+ 1. This implies Ok(G) = ok(G) + 1 ≤
SDk+1(G). Conversely, let A ∈ k+1A(G). Then, g−1A is zero-sumfree for
each g | A, and we can choose g | A in such a way that cm(g−1A) ≤ k.
Thus, SDk+1(G)− 1 ≤ ok(G).
2. For k = ∞ the claim is trivial. We assume k < ∞. Let S ∈ k+1A∗(G)
with |S| = ok+1(G). If S ∈ kA∗(G), the inequality follows immediately.
Otherwise, let g ∈ supp(S) with vg(S) = h(S). Then, cm(g−1S) < cm(S).

Thus g−1S ∈ kA∗(G) and |S| − 1 ≤ ok(G).
3. For k 6= 0 this is immediate by 1 and 2. For k = 0, the claim is by 1
equivalent to the assertion that O0(G) ≤ SD0(G) + 1. This is established
in [1, 26] (also cf. [12, Section 10]). �

In view of the results of this section, we see that all the invariants SD(G),
O(G), and D(G) can be expressed as particular instances of an invariant
SDk(G), namely SD0(G), SD1(G), and SD∞(G), respectively.

Beyond technical advantages for our subsequent investigations, this has
some conceptual relevance, too. Namely, the fact that O(G) = SD1(G) sug-
gests a heuristic regarding the problem whether for a given group SD(G) =
O(G) or SD(G) = O(G) − 1 holds, a problem that so far was not well-
understood.

Remark 3.4. If SD(G) and O(G) are (much) smaller than D(G), then it
is likely that SD(G) = O(G)− 1.

This is based on the reasoning that if imposing restrictions on the mul-
tiplicity has a strong effect on the maximal length of minimal zero-sum
sequences fulfilling theses restrictions—documented by the fact that SD(G)
is (much) smaller than D(G)—, then relaxing these restrictions should typ-
ically already have a slight effect on the maximal length. In Section 6 we
prove some results that support this heuristic. In particular, these results
document that it is actually only ‘likely’ that SD(G) = O(G)− 1, and that
there are special cases were this fails (e.g., for Cp, p prime, whether or not
this is the case, depends on the specific p, yet for almost all, in the sense
of density, we have SD(Cp) = O(Cp)− 1).

As mentioned above, our motivation for introducing SDk(G) is mainly
a technical one, to investigate O(G) = SD1(G) and SD(G) = SD0(G).
However, additional investigations of these invariants could be of interest.
For example, one could ask for the smallest kG such that SDkG(G) = D(G);
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to determine this kG would mean, to solve a weak form of the inverse
problem associated to D(G) (cf. Corollary 5.7 for details).

4. An ‘abstract’ lower-bound construction

In this section, we establish a fairly flexible construction principle for
zero-sumfree sets (and sequences), and give some first applications. More
specialized investigations and additional improvements are given in later
parts of the paper.

We start by defining a more general version of SDk(G).

Definition 4.1. Let G be a finite abelian group. Let k ∈ N0 ∪ {∞} and
` ∈ N. We set SD(k,`)(G) = max{|S| : S ∈ kA`(G)}, i.e., the maximum of
the length of minimal zero-sum sequences of cumulated multiplicity of level
` at most k.

Evidently, SD(k,1)(G) = SDk(G). We do not introduce the analogs of
other notions, such as the Olson constant, in this more general setting.

The main reason for introducing these invariants, is the following tech-
nical result. Its implications are discussed in later parts of the paper.

Theorem 4.2. Let G be a finite abelian group and H a subgroup of G. Let
k1, k2 ∈ N0 ∪ {∞}. Then

SDk1+max{0,k2−1}(G) ≥ SD(k1,|H|)(G/H) + SDk2(H)− 1− ε
where ε = 1 if k1 = 0 and |H| | SD(0,|H|)(G/H); and ε = 0 otherwise.

As is apparent from the proof, in certain cases we can choose ε = 0 even
if k1 = 0 and |H| | SD(0,|H|)(G/H); we do not formalize this claim, yet
encounter it in Section 6.

Before proving this result, we make some observations on SD(k,`)(G). We
start by collecting some general properties, which partly expand on Lemma
3.2.

Lemma 4.3. Let G be a finite abelian group. Let k, k′ ∈ N0 ∪ {∞} and
`, `′ ∈ N.

(1) If k′ ≤ k and `′ ≤ `, then SD(k′,`′)(G) ≤ SD(k,`)(G).
(2) SD(k,`)(G) ≤ D(G), and if k+ ` ≥ D(G) or ` ≥ exp(G), then equality

holds.

Proof. 1. Since for `′ ≤ `, we have cm`′(S) ≥ cm`(S) for each S ∈F(G), it

follows, for k′ ≤ k, that k′A`′(G) ⊂ kA`(G). The claim follows.
2. Since kA`(G) ⊂A(G), and under the imposed conditions equality holds,
the claim follows. �

If G is not cyclic, the condition ` ≥ exp(G), can be weakened to ` ≥
exp(G)− 1.
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In order to get explicit lower bounds from Theorem 4.2, we need lower
bounds for SD(k,`) for cyclic groups. We recall a well-known construction
and comment on its quality (cf. [4, 22]).

Lemma 4.4. Let n, ` ∈ N and k ∈ N0 ∪ {∞}.
(1) If k + ` ≥ n, then SD(k,`)(Cn) = n,

(2) Suppose k ≤ n− 1. Let d =
⌊−1+

√
1+8(n−k)/`

2

⌋
. Then,

SD(k,`)(Cn) ≥ k + `d+

⌊
n− k
d+ 1

− `d

2

⌋
.

In particular, SDk(Cn) ≥ k +
⌊−1+

√
1+8(n−k)

2

⌋
.

Proof. Let e be a generating element of Cn.
1. It suffices to note that cm`(e

n) = n− ` ≤ k.
2. Let d′ =

⌊
n−k
d+1 −

`d
2

⌋
. We note that d is the largest element in N0 such

that `d(d + 1)/2 ≤ n − k and we let d′ denote the largest element in N0

such that d′(d + 1) ≤ n − k − `d(d + 1)/2. We consider the sequence S =

ek(
∏d
i=1(ie))`((d+1)e)d

′
. Since k+`d(d+1)/2+d′(d+1) ≤ n it follows that

S is a minimal zero-sum sequence or zero-sumfree. Moreover, cm`(S) ≤ k.
Let je | S with j maximal, and set S′ = (−σ((je)−1S))(je)−1S. Then
S′ is a minimal zero-sum sequence with cm`(S

′) ≤ cm`(S); note that
−σ((je)−1S)) = j′e with j′ ∈ [j, n]. Thus, SD(k,`)(Cn) ≥ |S′|, and the
claim follows. The additional statement follows, noting that d′ = 0 in view
of ` = 1. �

The lower bound for SD(k,`)(Cn) is not always optimal (see Section 6 for
additional discussion). Yet, for (k, `) = (1, 1) it is always close to the true
value (cf. Section 1), and this should be the case for all other (k, `), too.
Indeed, in certain cases the optimality is known, i.e., the constant actually
is equal to the lower bound. For n prime and k 6= 0 this follows by a
recent result of Balandraud [4] (to see this, consider an extremal minimal
zero-sum sequence and remove an element with maximal multiplicity, and
apply [4, Theorem 8] to the resulting zero-sumfree sequence; the conditions
in the above lemma correspond to the extremal case of that result). And,
for large k + ` (namely, for k + ` ≥ bn/2c + 2, and even slightly below
this value), this is a direct consequence of a result on the structure of long
minimal zero-sum sequences, see [28, 32] and also [15, Section 5.1] for an
exposition. For a detailed investigation of the case k = 0 and ` = 1, i.e.
SD(Cn), and prime n, see Section 6; in this case equality at the lower bound
does not always (though, most of the time) hold.

For the proof of Theorem 4.2, as well as in some other arguments, we
need the following result that expands on [11, Lemma 7.1].
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Lemma 4.5. Let G be a finite abelian group, g ∈ G, and k ∈ [1, |G| − 1].
There exists some S ∈ 0F(G) with |S| = k and σ(S) = g, except if all the
following conditions hold: exp(G) = 2, k ∈ {2, |G| − 2}, and g = 0.

For the sake of completeness and since the later is relevant in some
special case, we discuss the two remaining meaningful values of k, namely
k = 0 and k = |G|. For k = 0, clearly, the only element of G that can be
represented as a sum of k elements is 0. For k = |G|, the problem reduces
to determining the sum of all elements of a finite abelian group: it is 0 if
the 2-rank of G is not 1, and the unique element of order 2 if the 2-rank is
1 (cf., e.g., [11, Lemma 7.1] for a detailed argument). Moreover, note that
the formulation of the exceptions is sharp.

Proof. We first assume that G is an elementary 2-group. For |G| = 2, we
have k = 1 and the claim is obvious. Thus, assume |G| 6= 2. We recall that
the sum of all elements of G is 0 (cf. above). First, we address the problem
for g = 0. By [11, Lemma 7.1] there exists for each ` ∈ [0, |G|/2− 1] \ {2}
some T ∈ 0F(G) with |T | = ` and σ(T ) = 0; let T ′ ∈ 0F(G) the element
with supp(T ′) = G \ supp(T ), then |T ′| = |G| − ` and σ(T ′) = 0 (recall
that the sum of all elements of G is 0). And, letting T ′′ ∈ 0F(G) denote an
element such that supp(T ′′) is a subgroup of index 2 of G, we get |T ′′| =
|G|/2 and σ(T ′′) = 0, except in case |G| = 4, yet this situation is covered
by the exceptional case.

Now, let g 6= 0. By the above reasoning, we know that there exists a
T ∈ 0F(G) with σ(T ) = 0 and |T | = k− 1 except for k = 3 and k = |G| − 1
(we address these two cases later). Clearly, T cannot contain all non-zero
elements and thus we may assume g - T , applying a suitable automorphism
of G. Then gT ∈ 0F(G) has the claimed property. For k = |G| − 1 we
can take

∏
h∈G\{g} h, which has sum 0− g = g, and for k = 3 we can take

0(g + h)h where h ∈ G \ {0, g}.
Now, suppose G is not an elementary 2-groups. Let G[2] denote the

subgroup of elements of order dividing 2, and let r denote its rank, i.e., the
2-rank of G. Moreover, let G \G[2] = G1 ] (−G1). We set δ = 0 or δ = 1
according to k even or odd, respectively.

If k ≤ |G| − 2r and g 6= 0, we consider g0δ
∏
h∈G0

(−h)h where G0 ⊂
G1 \ {−g, g}—note that at most one of the elements −g and g is contained
in G1—with cardinality b(k−1)/2c. Likewise, for k ≤ |G|−2r+1 and g = 0,
we consider 01−δ∏

h∈G0
(−h)h where G0 ⊂ G1 with cardinality bk/2c.

We continue with considering the case g = 0. Suppose k > |G| − 2r + 1
(this implies r ≥ 2). If k /∈ {|G|−2, |G|−2r+2}, we consider T

∏
h∈G1

(−h)h

where T ∈ 0F(G[2]) with |T | = k − |G| + 2r and σ(T ) = 0, which exists
by the argument for elementary 2-groups given above, since k − |G| + 2r

is neither 2 nor |G[2]| − 2. For k ∈ {|G| − 2, |G| − 2r + 2} we consider
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T
∏
h∈G1\{h′}(−h)h where h′ is arbitrary (since G is not an elementary 2-

group G1 is non-empty) and T ∈ 0F(G[2]) with σ(T ) = 0 and |T | = 4 or
|T | = 2r, respectively (recall that r ≥ 2).

Now, suppose g 6= 0 and k > |G|−2r ≥ 2r. Let T =
∏
h∈G[2]\{0} h. If r 6=

1, then σ(T ) = 0. In this case, for g /∈ G[2], we consider g0δT
∏
h∈G0

(−h)h
where G0 ⊂ G1 \ {−g, g} with cardinality b(k − 2r)/2c. And, for g ∈ G[2]
(note that in this case r 6= 0), we consider 0δg−1T

∏
h∈G0

(−h)h where
G0 ⊂ G1 with cardinality b(k + 2 − 2r)/2c; note that for k = |G| − 1 we
have that k + 2− 2r is odd and thus b(k + 2− 2r)/2c = (|G| − 2r)/2.

It remains to consider r = 1; let e ∈ G denote the element of order 2. For
g /∈ G[2], we consider (g+e)e0δ

∏
h∈G0

(−h)h where G0 ⊂ G1\{−g−e, g+e}
with cardinality b(k − 2)/2c (note that for k = |G| − 1, we have that k − 2
is odd). And for g = e, we consider e0δ

∏
h∈G0

(−h)h where G0 ⊂ G1 with
cardinality b(k − 1)/2c. �

Now, we give the proof of Theorem 4.2

Proof of Theorem 4.2. The special cases H = G and H = {0} are trivial;
we thus exclude them from our further investigations.

Let π : G → G/H denote the canonical map, as well as its extension

to the monoid of sequences. Moreover, let T ∈ k1A|H|(G/H) with length
SD(k1,|H|)(G/H), and let T2 ∈ k2A(H). Moreover, let h0 ∈ supp(T2) an
element with maximal multiplicity.

We consider the collection of sequences FT = π−1(T ) ∩ k1F(G) ⊂F(G);
where here π :F(G)→F(G/H) as detailed in Section 2. As each element
g ∈ G/H has |H| preimages under π, the set FT is non-empty. For each
S ∈FT we have that σ(S) ∈ H, yet the sum of each proper and non-empty
subsequence is not an element of H.

Suppose there exists some S0 ∈ FT with σ(S0) = h0. Then, A =
S0(h−1

0 T2) is a minimal zero-sum sequence with

cm(A) = cm(S0) + max{0, cm(T2)− 1} = k1 + max{0, k2 − 1}

(note that the supports of S0 and T2 are disjoint) and |A| = |S0|+ |T2|−1 =
|T |+ |T2| − 1, establishing the inequality with ε = 0.

It thus remains to establish the existence of such a sequence S0, and a
closely related sequence for the case ε = 1.

First, suppose k1 > 0. Let S′0 ∈ FT and let h′0 = σ(S′0) ∈ H. Let
g′0 ∈ supp(S′0) with maximal multiplicity. We set g0 = g′0 − h′0 + h0 and
S0 = g0(g′0)−1S′0. Then S0 ∈FT and σ(S0) = h0.

Now, suppose k1 = 0. Suppose there exists some g ∈ G/H such that
0 < v = vg(T ) < |H|. Let T0 = g−vT and S′0 ∈ π−1(T0)∩ 0F(G); moreover,
let g ∈ π−1(g). We set h′0 = vg + σ(S′0).
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We assert that we may assume that there exists some F ∈ 0F(H) with
|F | = v and σ(F ) = h0 − h′0. For H not an elementary 2-group this is
immediate by Lemma 4.5. For H an elementary 2-group, possibly choosing
a different sequence T2, we may assume that h0 is an arbitrary non-zero
element of H, and it thus suffices that σ(F ) + h′0 6= 0, which of course can
be achieved. Let F be such a sequence and set S0 = (g + F )S′0. Then
cm(S0) = 0 and σ(S0) = h0, and the claim follows as discussed above.

It remains to consider the case that k1 = 0 and vg(T ) ∈ {0, |H|} for
each g ∈ G/H, in particular |H| | SD(0,|H|)(G/H). Since supp(T ) can
not be a group, there exist, possibly equal, g1, g2 ∈ supp(T ) such that
g1 + g2 /∈ supp(T ). We set T ′ = (g1 + g2)g−1

1 g−1
2 T ; for the case g1 = g2,

recall that vgi(T ) = |H| ≥ 2. We have that T ′ ∈ 0A|H|(G/H) and there
exists some g ∈ G/H such that 0 < v = vg(T

′) < |H|.
We can now apply the same argument with T ′ instead of T to get the

lower bound with ε = 1—note that |T ′| = |T | − 1—except in the case
|T ′| = 1, since (the analog) of S0 and T2 might not have disjoint support.
Note that in this exceptional case, we also have |H| = 2, and thus |G| = 4.
As in this case, the right-hand side is at most 2 = D(G/H) + D(H) − 2,
while the left-hand side is at least SD0(G) ≥ 2, the assertion is also true in
this exceptional case. �

We point out some special cases contained in this result (for a special
case of the first assertion see [26], and the third assertion was obtained by
a different argument by Baginski [1]).

Corollary 4.6. Let G be a finite abelian group and H a subgroup.

(1) O(G) ≥ O(G/H) + O(H)− 1.
(2) SD(G) ≥ SD(G/H) + O(H)− 2 ≥ SD(G/H) + SD(H)− 2.
(3) If |G| ≥ 3 and H is a proper subgroup, then SD(G) > SD(H).

Proof. The first two assertions are clear by Theorem 4.2 with k1 = k2 equal
to 1, and with k1 = 0 and k2 = 1, respectively.

It remains to prove the final assertion. Since |G| ≥ 3, implies that
SD(G) ≥ 2, we can assume that |H| ≥ 3 (as SD(H) = 1 for |H| ≤
2). If SD(0,|H|)(G/H) ≥ 3, the claim is immediate by Theorem 4.2, and
if SD(0,|H|)(G/H) = 2, the claim also follows by 4.2 in view of |H| -
SD(0,|H|)(G/H). Since |H| ≥ 3, we have SD(0,|H|)(G/H) ≥ 3 for |G/H| ≥ 3,
it remains to consider |G/H| = 2. Yet, in this case, SD(0,|H|)(G/H) = 2,
and as again |H| - SD(0,|H|)(G/H), the claim follows. �

Applying Theorem 4.2 with k1 = k2 =∞ we can also obtain the classical
estimate D(G) ≥ D(G/H) + D(H) − 1. We frequently make use of the
following special case of Theorem 4.2.
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Corollary 4.7. Let H be a finite abelian group, k ∈ N0 ∪ {∞}, and n ∈
N \ {1}. Then, for each m ∈ [1, n] we have,

SDk+δ(H ⊕ Cn) ≥ SDk+1(H) +m− 1

where δ = max{0,m−|H|+1}. In particular, SDk(Cn⊕Cn) ≥ SDk+1(Cn)+
n− 2.

Proof. We apply Theorem 4.2 with k2 = k+1 and k1 = δ to get SDk+δ(H⊕
Cn) ≥ SD(δ,|H|)(Cn) + SDk+1(H)− 1− ε, where ε is as defined there.

If ε = 1, we have δ = 0 and |H| | SD(δ,|H|)(Cn). So, SD(δ,|H|)(Cn) − 2 ≥
|H| − 2 ≥ m− 1, the last inequality by the fact m− |H|+ 1 ≤ δ ≤ 0.

We thus may assume ε = 0. It thus suffices to show that SD(δ,|H|)(Cn) ≥
m. For e a generating element of Cn, the sequence S = em−1((n − m +
1)e) is a minimal zero-sum sequence and cm|H|(S) ≤ max{0,m − |H|} ≤
max{0,m− |H|+ 1}, implying that SD(δ,|H|)(Cn) ≥ m.

The additional claim follows applying the result with m = n− 1. �

We end this section with some discussion of Corollary 4.7. First, we
mainly apply this result in situations where for m = n we still have δ = 0;
thus, we also disregard the fact that the result can be improved for m < n.
Moreover, in Section 7 we obtain similar results, where imposing stronger
assumptions better results can be obtained. Second, in the special case that
the 2-rank of G is 1 and there exists an extremal sequence with respect to
SDk(G) containing the element of order 2 more than once, we can replace
max{0, n−|G|+1} by max{0, n−|G|}; the reason is apparent from the proof
and cf. the remark after Lemma 4.5. Of course, this situation is extremely
special and in fact only occurs if |G| = 2. Thus, we disregard this slight
improvement for our general considerations. Yet, we still mention it, since
this phenomenon is responsible for the special role of elementary 2-groups
(cf. Section 8).

Finally, in the case Cn ⊕ Cn, we note that for n and k > 0, we can get
another lower bound, which can be better, for SDk(C

2
n), namely

SDk(C
2
n) ≥ SDk(Cn) + n− 1

that is obtained by applying the above result with m = n—note that in
this case δ = 1—and k − 1. However, in case SDk+1(Cn) > SDk(Cn), the
inequalities coincide and yield two distinct ways to construct a zero-sum
sequence in kA(C2

n) of the same length. Indeed, it follows from the work
of Bhowmik and Schlage-Puchta [2], as well as of Nguyen and Vu [23], for
the Olson constant, i.e., k = 1, that for n a large prime (at least 6000
suffices) one obtains all elements of maximal length of 1A(C2

n) using these
two constructions (or only the latter one, if SDk+1(Cn) = SDk(Cn)), and
elements of maximal length from 2A(Cn) and 1A(Cn), respectively. For a
more formal description, see Theorem 6.2.
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5. Basic results for groups of large rank

In this section, we discuss how Corollary 4.7 can be used to obtain good,
and in certain cases optimal, lower bounds for O(G) and SD(G) for groups
with large rank (in a relative sense).

Informally and restricted to the case of sets, the basic idea and novelty of
this construction, which is encoded in this result, is to use minimal zero-sum
sequences—not sets—and zero-sumfree sequences over subgroups of G to
construct minimal zero-sum sets and zero-sumfree sets over G (the idea to
extend ‘sets to sets’, and also ‘sequences to sequences’, are both frequently
used, e.g., in [14] to obtain the lower bound mention in Section 1).

Our goal in this section is to show that, using this idea, lower bounds,
which seem to be fairly good, can be obtained in a direct way. In Section
7, we discuss other, more involved, variants of this approach that in certain
cases yield slightly, though perhaps significantly, better bounds.

In the following result, we give one type of lower bound that can be
derived using this method.

Theorem 5.1. Let G = ⊕ri=1Cni where r ∈ N\{1} and 1 < n1 ≤ · · · ≤ nr.
Let k ∈ N0. If t ∈ [2, r] such that ns <

∏s−1
i=1 ni for each s ∈ [t+ 1, r], then

the following assertions hold.

(1) If nt−1 6= nt, then

SDk(⊕ri=1Cni) ≥
∑

i∈[1,r]\{t}

(ni − 1) + SDk+r−1(Cnt).

(2) If k + r > 2, then

SDk(⊕ri=1Cni) ≥
∑

i∈[1,r]\{t}

(ni − 1) + SDk+r−2(Cnt).

We point out that although in this result conditions are imposed these
are mild assumptions. In particular, note that the choice t = r is always
admissible. Thus, except for G = Cn⊕Cn and k = 0—for this case see the
remarks after Corollary 4.7—this result can actually be applied.

We break up the proof of this result into several partial results. On the
one hand, we do so for the clarity of the exposition. Yet, on the other
hand, these partial results are of some independent interest, since they can
be applied and combined in different ways.

As already mentioned, the basic idea is to apply repeatedly Corollary
4.7. Obviously, we want to do this in such a way that the lower bound for
SDk(G) that we obtain at the end is as large as possible. Yet, the optimal
strategy is not always obvious. On the one hand, we want to keep the
δs small, in the best case equal to 0, which suggests to ‘split off’ small
cyclic components. On the other hand, it is better to ‘split off’ large cyclic
components, since SD`(Cm) for fixed ` is closer to D(Cm) if m is small,
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and it is thus better if the cyclic group that finally remains is as small as
possible.

The former strategy is formalized in Proposition 5.2. And, the later in
Proposition 5.3, restricted to groups where it is well applicable. Theorem
5.1 is a combination of these two basic strategies with one parameter t to
balance them. As we see in Section 7 additional refinements are possible.

Proposition 5.2. Let r ∈ N \ {1} and n1, . . . , nr ∈ N with 1 < n1 ≤ · · · ≤
nr. Then, for each s ∈ [0, r − 2] and in case nr−1 6= nr in addition for
s = r − 1,

SDk(⊕ri=1Cni) ≥
s∑
i=1

(ni − 1) + SDk+s(⊕ri=s+1Cni).

Moreover, if k + r > 2, then at least

SDk(⊕ri=1Cni) ≥
r−1∑
i=1

(ni − 1) + SDk+r−2(Cnr).

Proof. We prove the result by induction on s. For s = 0 there is nothing
to show. Thus, we assume that the assertion holds for some s ≥ 0, and all
r and ni, and show the claim for s + 1. We consider SDk(⊕ri=1Cni). By
Corollary 4.7, we know, provided that n1 <

∏r
i=2 ni,

(5.1) SDk(⊕ri=1Cni) ≥ (n1 − 1) + SDk+1(⊕ri=2Cni).

This is only not the case if r = 2 and n1 = n2. In this case, we have again by
Corollary 4.7 if k > 0, applying it with k−1, that SDk(⊕ri=1Cni) ≥ (n1−1)+
SDk(⊕ri=2Cni), and are done. We consider SDk+1(⊕ri=2Cni). If r = 2, there
remains nothing to show. Otherwise, we apply the induction hypothesis,
to get SDk+1(⊕ri=2Cni) ≥ SDk+1+s(⊕ri=s+2Cni) if s+ 1 ∈ [0, r− 2] and also
for s+ 1 = r− 1 if nr−1 6= nr. Moreover, for s+ 1 = r− 1 in case (k+ 1) +

(r − 1) > 2 we get SDk+1(⊕ri=2Cni) ≥
∑s+1

i=2 (ni − 1) + SDk+s(⊕ri=s+2Cni).
In combination with (5.1), this yields our claim. �

Proposition 5.3. Let H be a finite abelian group. Let 1 < n1 ≤ · · · ≤ nr
positive integers such that for each s ∈ [1, r] we have ns < |H|

∏s−1
i=1 ni. Let

G = H ⊕ (⊕ri=1Cni) and let k ∈ N. Then,

SDk(G) ≥ SDk+r(H) +

r∑
i=1

(ni − 1).

Proof. We induct on r. For r = 1, this is merely Corollary 4.7; note
that by assumption n1 < |H| and thus δ = 0. And, the induction-step
is shown by applying first the induction hypothesis with n1, . . . , nr−1 and
then noting that, since nr < |H|

∏r−1
i=1 ni we can apply Corollary 4.7, again

with δ = 0. �
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The proof of Theorem 5.1 is now merely a combination of the preceding
results.

Proof of Theorem 5.1. Suppose t fulfills our assumption. LetH = ⊕ti=1Cni .
First, we apply Proposition 5.3 with H as just defined—the conditions
are fulfilled by our assumption on t—to get SDk(H ⊕ (⊕ri=t+1Cni)) ≥
SDk+(r−t)(H)+

∑r
i=t+1(ni−1). We then apply Proposition 5.2 to the group

H to get

SDk+r−t(H) ≥ SD(k+r−t)+t−2+ε(Cnt) +
t−1∑
i=1

(ni − 1)

with ε = 1 if nt−1 6= nt and with ε = 0 if k + r > 2. Combining these two
inequalities, yields the result. �

In the remainder of this section, we discuss several applications of The-
orem 5.1.

First, we give a simple explicit lower bound. For simplicity of the pre-
sentation, we ignore certain improvements and impose the conditions that
the rank of G is at least three. In important special cases, we give a more
detailed analysis later.

Corollary 5.4. Let G = ⊕ri=1Cni where r ∈ N\{1, 2} and 1 < n1 | · · · | nr.
Let k ∈ N0. If t ∈ [2, r] such that ns <

∏s−1
i=1 ni for each s ∈ [t+ 1, r], then

SDk(G) is at least

D∗(G)−max

{
0, nt − k − r + 2−

⌊
−1 +

√
1 + 8(max{0, nt − k − r + 2})

2

⌋}
.

In particular, if r ≥ nt + 1− k, then SDk(G) ≥ D∗(G).

Proof. By Theorem 5.1, we know that SDk(⊕ri=1Cni) ≥
∑

i∈[1,r]\{t}(ni −
1) + SDk+r−2(Cnt). By Lemma 4.4, we know that SDk+r−2(Cnt) ≥ k +

r − 2 + b(−1 +
√

1 + 8(n− (k + r − 2)))/2c for k + r − 2 ≤ nt − 1 and
SDk+r−2(Cnt) = nt for k + r − 2 ≥ nt. The claims follow. �

The following result improves and generalizes results in [11, Section 7]
and [26]. We recall that SD0(G) = SD(G) and SD1(G) = O(G) and point
out that the main point is that we get the exact value of these classical
constants for a larger class of groups (not the fact that we also get the
values of SDk(G) for other k).

Corollary 5.5. Let G be a finite abelian group with D(G) = D∗(G), and
k ∈ N0. If r(G) ≥ exp(G) + 1− k, then

SDk(G) = D∗(G).
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Proof. We have SDk(G) ≤ D(G) = D∗(G) by Lemma 3.2 and assumption.
It thus suffices to show that if r(G) ≥ exp(G)+1−k, then SDk(G) ≥ D∗(G).
By Lemma 4.4, we have SDk+r(G)−2(H) = |H| for every cyclic subgroup H
of G. The result is thus clear for r(G) = 1 and follows by Theorem 5.1, with
t = r(G), in all other cases (note that r(G) = 2 and k = 0 are impossible
by the condition). �

For certain types of groups additional improvements are possible. On
the one hand, we did not use our method in its full strength, e.g., we could
weaken the condition r(G) ≥ exp(G) + 1−k to r(G) ≥ nt+ 1−k with nt as
in Theorem 5.1. In particular, in this way we see that for certain p-groups
we can assert the equality of the Olson constant and Strong Davenport
constant with the Davenport constant even if the rank is much smaller than
the exponent; a particularly extreme example, where the rank is only of
order log log(exp(G)) are groups of the form C2

p ⊕ (⊕r−3
i=0Cp2i ) (note that we

can chose t = 3). On the other hand, there are more subtle improvements
for particular types of groups (see Section 7).

Our results can also be used in a somewhat different direction. Namely,
they can be used to show the existence of finite abelian groups—we could
also exhibit explicit examples—where the Olson and the Strong Davenport
constant exceed the D∗-invariant (by any prescribed value). To the best
of our knowledge, no example of a group with SD(G) > D∗(G) or O(G) >
D∗(G) appeared in the literature up to now.

Corollary 5.6. Let k ∈ N0 ∪ {∞} and d ∈ N. There exists some finite
abelian group G such that

SDk(G) ≥ D∗(G) + d.

Proof. It is well-known that there exists some finite abelian group G′ such
D(G′) ≥ D∗(G′) + d; in fact, this follows directly from the fact that there
exists a G′′ with D(G′′) ≥ D∗(G′)+1 and considering (G′′)d (cf. [12, Section
3]). Note that G′ is non-cyclic. By Lemma 3.2, we know that D(G′) =
SDk′(G

′) for some, in fact each, sufficiently large k′, and we assume k′ ≥ k.

Let n = exp(G′). By Proposition 5.3 we have SDk(G
′⊕Ck′−kn ) ≥ SDk′(G

′)+
(k′ − k)(n− 1) = D(G′) + (k′ − k)(n− 1) ≥ D∗(G′) + d+ (k′ − k)(n− 1) =

D∗(G′ ⊕ Ck′−kn ) + d. �

Recasting this result in a negative way, we see that even taking vari-
ous improvements presented in later parts of the paper into account, our
method cannot yield the actual value of the Olson and the Strong Daven-
port constant for all groups, as none of the explicit bounds exceeds D∗(G).

In the result below we characterize for groups of rank at most two for
which k we have SDk(D) = D(G). We do so mainly to illustrate the relation
to the inverse problem associated to the Davenport constant and thus keep
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the proof brief; the result is a direct consequence of the recent solution
of the inverse problem associated to D(G) for groups of rank two, due to
Reiher [27], Geroldinger, Gao, Grynkiewicz [13], and Schmid [29].

Corollary 5.7. Let G be a group of rank at most two and k ∈ N0. Then
SDk(G) = D(G) if and only if

• k ≥ exp(G)− 1 for G homocyclic and not of the form C2
2 ,

• k ≥ exp(G)− 2 otherwise.

Proof. We assert that SDk(G) = D(G) under the respective assumptions.
For G of the form C2

2 , the claim follows by direct inspection (cf. Section
8 for a result including this case). Assume G is not of that form. We
recall that D(G) = D∗(G). Since under the assumptions on k, we have
SDk(G) ≥ D∗(G) (by Lemma 3.2, Corollaries 5.5 and 4.7 for the cyclic, rank
two homocyclic, and remaining case, resp.), we see that SDk(G) = D(G)
holds for the claimed k.

Conversely, let A ∈ A(G) with |A| = D(G). We have to show that
cm(S) ≥ exp(G) − 1 and cm(S) ≥ exp(G) − 2, resp. For cyclic G it is

well-known that A = eexp(G) for e a generating element of G and the claim
follows in this case. For G of rank two, the structure of S is known as
well; [13, Corollary] gives a conditional result and in [27] it was proved
that this condition is always fulfilled. We discuss the homocyclic case.
Let n = exp(G). In this case it is known that there exists an independent
generating set {e1, e2} such that A = en−1

1

∏n
i=1(e2+aie1) with ai ∈ [0, n−1]

and
∑n

i=1 ai ≡ 1 (mod n). This last condition implies that, for n 6= 2, not
all ais are distinct (cf. the discussion after Lemma 4.5). Thus cm(A) ≥
(n − 2) + 1, implying the claim. The non-homocyclic case is similar; we
omit the details. �

6. Groups with large exponent

We discuss the problem of obtaining lower bounds for the Olson and the
Strong Davenport constant for groups with a large exponent (in a relative
sense). In particular, our considerations include cyclic groups and groups
of rank two. In our general discussion, we emphasize the Olson constant
over the Strong Davenport constant. At the end, we determine the Strong
Davenport constant for Cp and C2

p , for p a large prime, where the Olson
constant is already known.

For the Olson constant, the case of cyclic groups received, in particular
recently, considerable attention (cf. the preceding discussions). As dis-
cussed the case of prime cyclic groups is meanwhile solved; yet, the general
case remains open and it is known that the answer cannot be as uniform as
in the prime case. We show how our method of constructing zero-sumfree
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sets allows to derive all known ‘exotic’ examples of large zero-sumfree sets
in a fairly direct way.

To simplify the subsequent discussion, we recall the two classical con-
structions for large zero-sumfree sets of cyclic groups; for the former also
see Lemma 4.4. Let n ∈ N≥4 and let e be a generating element of Cn.

•
∏k
i=1 ie, where

∑k
i=1 i ≤ n− 1, is an element of 0A∗(Cn).

• (−2e)e
∏k
i=3 ie, where

∑k
i=1 i ≤ n + 1, is an element of 0A∗(Cn) for

n ≥ 4.

Note that in both cases k is the length/cardinality, while the condition on
k in the second case is weaker, though for most n the condition is only
formally weaker. As already discussed, for n prime, these constructions
when choosing k as large as possible yield zero-sumfree sets of maximal
cardinality. However, for certain n, better constructions are known; they
are attributed to Selfridge in [19, C15].

We apply Theorem 4.2 to obtain lower bounds for groups of the form G′⊕
Cn where n is large relative to |G′|; in the result below there is no explicit
assumption on the size of n relative to |G′|, yet the result, in particular the
explicit lower bounds, are only useful if n is at least |G′|. One way to do so,
yields the following result that generalizes and refines a result for groups
of rank two established in [7, Theorem 9].

Proposition 6.1. Let G ∼= G′ ⊕ Cn where exp(G′) = m and m | n.

(1) Then O(G) ≥ O(G′) + SD(1,|G′|)(Cn)− 1. In particular,

O(G) ≥ O(G′) + |G′|d+

⌊
n− 1

d+ 1
− |G

′|d
2

⌋
where d =

⌊−1+
√

1+8(n−1)/|G′|
2

⌋
.

(2) Then O(G) ≥ O(G′ ⊕ Cm) + SD(1,|G′|m)(Cn/m)− 1. In particular,

O(G) ≥ O(G′ ⊕ Cm) + |G′|md+

⌊
n−m
m(d+ 1)

− |G
′|md
2

⌋
where d =

⌊−1+
√

1+8(n−m)/(m2|G′|)
2

⌋
.

Proof. We apply Theorem 4.2 with k1 = k2 = 1 and chose H such that
H ∼= G′ and G/H ∼= Cn, and H ∼= G′⊕Cm and G/H ∼= Cn/m, respectively.
The additional statements follow by invoking Lemma 4.4. �

In case G is cyclic, that is |G′| = 1, the first assertion yields no new
insight, yet the second one can yield an improvement over the classical
lower bounds. Namely, if 2 | n, then this bound yields O(Cn) ≥ 2 + 2d +

b n−2
2(d+1) − dc with d = b−1+

√
2n−3

2 c and this bound can be better than the

bound O(Cn) ≥ 1 + b−1+
√

8n+9
2 c that is obtained from the second classical
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construction, first noted by Selfridge. For example, note that for every even
n with (t2 +3)/2 ≤ n < (t2 + t−2)/2 for some odd t ∈ N, the former bound
is t+ 1, while the latter (classical) bound is only t.

For non-cyclic G, it seems that the construction stated in the first part of
the proposition is typically better, and possibly never worse, than the one
stated in the second part. In view of the fact that the latter contains O(G′⊕
Cm) while the former contains O(G′) a precise and general comparison of
the two bounds is difficult.

We continue by pointing out that there are also other ways to apply
Theorem 4.2 for these types of groups. One other way is to apply Theorem
4.2 also with H = G′ and G/H ∼= Cn, yet with k1 = 0 and k2 = 2. This
yields

O(G) ≥ SD2(G′) + SD(0,|G′|)(Cn)− 1− ε
with ε = 1 if |G′| | SD(0,|G′|)(Cn) and ε = 0 otherwise.

This construction can in fact be better. For example for C3 ⊕ C12 it
yields 9, while the other one only yields 8; also note that 9 is the actual
value of the Olson constant in this case (see [30]).

Yet, for C3 ⊕ C18 still a different way to apply Theorem 4.2 yields a
better bound; namely, with a subgroup H ∼= C6 such that G/H ∼= C9 and
k1 = k2 = 1—note SD1(C6) = 4—we get the lower bound 4 + 8− 1 = 11.

Using one of these constructions, yields the exact value of O(G) for all
groups of rank two up to order 55 as computed by Subocz [30].

Finally, we point out a case were a potential improvement to Theorem 4.2
becomes relevant (cf. the discussion after that result); again, the construc-
tion is originally due to Selfridge. We first state the construction explicitly
and then discuss how this is related to Theorem 4.2.

Let n = 25k(k + 1)/2 and let m = 5k(k + 1)/2 with k ∈ N. Let e
be a generating element of Cn, and let H = {0,me, 2me, 3me, 4me} the
subgroup of order 5. We consider the sequence

A = (me)2(2me)
4∏
j=0

(
jme+

k∏
i=1

ie
)
.

This is a minimal zero-sum sequence with cm(A) = 1, and thus O(Cn) ≥
|A| = 3+5k; again this is better than the bound obtained from the classical
constructions, which is 2 + 5k.

This bound is essentially also a particular instance of our construction
principle, namely it corresponds to

O(Cn) ≥ SD2(C5) + SD(0,5)(Cn/5)− 1.

Yet, note that we do not get this from Theorem 4.2, since in this case we
have ε = 1; we cannot rule out that 5 | SD(0,5)(Cn/5) and in fact the lower
bound we use is 5k. However, a more careful analysis shows that in this
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case the extra argument in the proof of Theorem 4.2 that is responsible for
ε = 1 is not needed. As for one, and thus any, non-zero element of H, there
is a sequence in 0A5(Cn/H) of length 5k, the lower bound for SD(0,5)(Cn/5),
such that the sum of the preimage of this sequence, as constructed in the
proof of Theorem 4.2, has this element of H as its sum.

We end this section with some discussion of the Strong Davenport con-
stant. On the one hand, we can of course obtain explicit lower bounds in
the same way as for O(G) or via the inequality SD(G) ≥ O(G) − 1 from
the bound for O(G). According to the heuristic we presented in Remark
3.4 we expect that often SD(G) = O(G)− 1 rather than SD(G) = O(G).

We elaborate on this point for the two types of groups with large ex-
ponent where O(G) is known, i.e., Cp and C2

p for prime p (assuming that

p is large). We start by determining SD(C2
p); a crucial tool is the recent

solution of the inverse problem associated to O(C2
p) for large primes p due

to Bhowmik and Schlage-Puchta, and Nguyen and Vu (cf. the discussion
after Corollary 4.7). For clarity, we restate their result for minimal zero-
sum sequences—not for zero-sum free sets, as in the original sources—and
use the notation of the present paper.

Theorem 6.2. Let p > 6000 be a prime, and let A ∈ 1A(C2
p) an element

of maximum length, i.e., |A| = SD1(C2
p) = O(C2

p). Then, there exists an
independent generating set {e1, e2} such that on of the following statements
holds:

• A = (e1 + S)e−1
2 T where S ∈ 1F(〈e2〉) with |S| = p and σ(S) = e2,

and T ∈ 1A(〈e2〉) with |T | = SD1(Cp) where e2 | T and ve2(T ) = h(T ).

• A = (2e1 +ae2)(e1 +S)e−1
2 T where S ∈ 0F(〈e2〉) with |S| = p−2 and

σ(S) = (1− a)e2, and T ∈ 2A(〈e2〉) with |T | = SD2(Cp) where e2 | T
and ve2(T ) = h(T ).

Conversely, every A of the above form is an element of 1A(C2
p); for A of

the first type we have |A| = SD1(C2
p), and for A of the second type we have

|A| = SD1(C2
p) if and only if SD2(Cp) > SD1(Cp).

Having this result at hand, we obtain the exact value of SD(C2
p) in a

fairly direct way.

Theorem 6.3. Let p be a prime, and suppose p > 6000. Then,

SD(C2
p) = O(C2

p)− 1.

Proof. By Lemma 3.3, it suffices to show that SD(C2
p) 6= O(C2

p) = SD1(C2
p).

Let A ∈ 1A(C2
p) with maximal length. It suffices to show that cm(A) = 1

(and not 0).
By Theorem 6.2 we know the structure of A. Assume first that A is of

the first type (mentioned in this result). Then cm(A) cannot be 0, as this
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would imply cm(S) = 0, which contradicts σ(S) 6= 0 (cf. the remark after
Lemma 4.5).

Now, assume A is of the second type. Note that this implies SD2(Cp) >
SD1(Cp). If cm(A) = 0, it follows that cm(T ) = 1. Yet, then SD1(Cp) ≥ |T |
and thus SD2(Cp) = SD1(Cp), a contradiction. �

The condition p > 6000 stems directly from Theorem 6.2, in case an
analogous assertion should hold, which is likely, without that assumption,
then we could drop this assumption in Theorem 6.3 as well. Only, note that
p = 2 is a special case—see the remark after Corollary 4.7—and SD(C2

2 ) =
O(C2

2 ).
In the case of cyclic groups, even prime cyclic groups, the problem is

more complicated. Indeed, whether SD(Cp) is equal to O(Cp) or O(Cp)−1,
varies with p, as we see below. Though, typically SD(Cp) equals O(Cp)−1.
This is in line with the heuristic mentioned in Remark 3.4, that it is likely
that SD(Cp) equals O(Cp) − 1, in view of the fact that O(Cp) and D(Cp)
are far apart.

Our argument below crucially relies on the recent solution of the inverse
problem associated to O(Cp) in the detailed form given by Deshouillers
and Prakash [8], and also see [21]; the fact that such results are only known
for sufficiently large primes, is the main reason we have to impose this
condition. Yet, there actually are some isolated phenomena for very small
primes, on which we comment after the proof.

Theorem 6.4. Let p be a sufficiently large prime. If p = k(k + 1)/2 − 2
or p = k(k + 1)/2 − 4, for some k ∈ N, then SD(Cp) = O(Cp). Otherwise
SD(Cp) = O(Cp)− 1.

It is widely believed that infinitely many primes of the form k(k+1)/2−2
and k(k + 1)/2− 4 exist, as there is no ‘obvious’ reason for the respective
polynomial not to take a prime value infinitely often (in particular, they
are irreducible over Q); we checked that there are many.

Proof. Let S ∈ 0A∗(Cp) with |S| = O(Cp)−1. If we can assert that −σ(S) |
S, then SD(Cp) < O(Cp). Assume that −σ(S) - S.

We distinguish various cases according to the structure of S as described
in [8] (in particular, see Theorem 27 and Table 1). According to this result,
there exists a (unique) generating element e of Cp such that S = S′S′′

where S′ =
∏`′

i=1(j′ie) with `′ ≤ 2 and j′i ∈ [−4,−1], and S′′ =
∏`
i=1(jie)

with ji ∈ [1, p/2] and
∑`

i=1 ji ≤ p + 2; we assume ji < ji+1. Following [8]

we write s′′ for
∑`

i=1 ji.
We discussed the various cases that can arise according to this classifi-

cation.
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Case 1. |S′| = 0.
Case 1.1. s′′ ≤ p−1. Without restriction assume that s′′ is minimal (among
all S in this case, fulfilling −σ(S) - S). This minimality assumption implies

that j`+1 = p− s′′ > j`, otherwise we could consider (j`+1e)
∏`−1
i=1(jie) and

violate the minimality assumption. Moreover, it follows that ji = i for
each i, since otherwise replacing ji by ji − 1 for a suitable i would yield a
zero-sum free set, contradicting the maximality of S. Yet, this implies that
p = (`+ 1)(`+ 2)/2, which is not the case for sufficiently large p.
Case 1.2. s′′ = p. This is clearly impossible.
Case 1.3. s′′ = p+ 1. It follows that e - S. We have p+ 2 = 1 + s′′ ≥ (`+
1)(`+2)/2 > p−1. Since for sufficiently large p, we have that (`+1)(`+2)/2
is neither p nor p+ 1, as the arising polynomials are reducible (see [4]), it

follows that p+2 = (`+1)(`+2)/2. So, we get that S = S′′ =
∏`
i=1(i+1)e

and −σ(S) = −e. Note that for p + 2 = (` + 1)(` + 2)/2, we indeed have
O(Cp) = `+ 1.
Case 1.4. s′′ = p + 2. It follows that 2e - S. We have p + 4 = 2 + s′′ ≥
(` + 1)(` + 2)/2 > p − 1. Again, for sufficiently large p, (` + 1)(` + 2)/2
is neither p, p + 1, nor p + 3, and the case p + 2 was already settled it

follows that p + 4 = (` + 1)(` + 2)/2. So, we get that S = S′′ = e
∏`
i=3 ie

and −σ(S) = −2e. Note that for p+ 4 = (`+ 1)(`+ 2)/2, we indeed have
O(Cp) = `+ 1.
Case 2. S′ = (−e) and s′′ ≤ p − 1. We consider (−σ(S))S′′, and are in
Case 1.
Case 3. S′ = (−e) and s′′ ∈ {p, p+ 1, p+ 2} is impossible; for p and p+ 1
this is obvious, and for p+ 2 note that −σ(S) = (−e).
Case 4. S′ = (−2e), and s′′ ≤ p− 1 or s′′ = p+ 1. Considering (−σ(S))S′′,
we are in Case 1.
Case 5. S′ = (−2e) and s′′ ∈ {p, p+ 2}. This is impossible.
Case 6. S′ = (−3e) or S′ = (−4e). We would get that (−σ(S))S′′ violates
the condition s′′ ≤ p+ 2 (where s′′ now is computed for (−σ(S))S′′).
Case 7. S′ = (−2e)(−e) or S′ = (−3e)(−e). Then (−σ(S))S′′(−e) violates
the condition s′′ ≤ p+ 2 (now with s′′ for (−σ(S))S′′(−e)). �

In the proof we used that there are no sufficiently large primes of the
form k(k + 1)/2, k(k + 1)/2 − 1, and k(k + 1)/2 − 3. However, there
are some primes of this form, namely 2, 3, 5, and 7. For these direct
inspection shows that 1 = SD(C2) < O(C2) = 2, SD(C3) = O(C3) = 2,
2 = SD(C5) < O(C5) = 3, and 3 = SD(C7) < O(C7) = 4. A reason why,
say, SD(C7) < O(C7), while our proof (see Case 1.4) suggests that SD(Cp) =
O(Cp) for primes of the form k(k + 1)/2 − 3 is the fact that 7 is so small
that the construction (−2e)e(3e)(5e)...(ke) (with k = 5 is this case), does
not yield a set. However, for the next prime 11, we already have SD(C11) =
O(C11) = 5; where the lower bound is given by (−2e)e(3e)(4e)(5e).
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7. Refined bounds

In this section, we present two more specialized constructions that allow
to improve, in certain cases, the results established in Section 5. In particu-
lar, these constructions are applicable in the important case of homocyclic
groups. Indeed, we focus on this case; yet, we formulate our technical
results in greater generality.

Informally, the idea is similar to the one presented in Section 5, in par-
ticular see Corollary 4.7; yet, rather than ‘adding’ only a cyclic component,
we ‘add’ groups of rank two and three, resp., which can yield better results
than ‘adding’ a cyclic component two times or three times, resp.

At first glance, the improvements might seem minimal, and perhaps not
even worth the additional effort. Yet, as we detail at the end of this section
and in Section 8, this small improvement is of significance (perhaps it is
even crucial).

We start with the result ‘adding’ three cyclic components at once; though
it is more complex on a technical level, it is more in line with the already
explored construction from a conceptual point of view.

Proposition 7.1. Let G be a finite abelian group with exp(G) ≥ 3, k ∈
N0 ∪ {∞}, and n1, n2, n3 ∈ N \ {1, 2} with ni ≤ |G|+ 1. Then

SDk(G⊕ Cn1 ⊕ Cn2 ⊕ Cn3) ≥ SDk+3(G) + (n1 − 1) + (n2 − 1) + (n3 − 1).

Proof. Let {e1, e2, e3} be an independent generating set of Cn1 ⊕Cn2 ⊕Cn3

with ord(ei) = ni for each i. Let πi : G⊕〈e1, e2, e3〉 → 〈ei〉, for i ∈ [1, 3] and
π : G⊕ 〈e1, e2, e3〉 → 〈e1, e2, e3〉 denote the standard epimorphism (subject
to this decomposition and generating set). Let A ∈ k+3A(G) with |A| ≥ 3;
note that by our assumption on G such an A always exists. Let g1g2g3 | A
such that cm((g1g2g3)−1A) ≤ k.

Let S1, S2, S3 ∈ 0F(G) with |Si| = ni − 2 and σ(S1) = g1, σ(S2) =
−g1 − g2, and σ(S3) = −g1 − g2 + g3; these exists by Lemma 4.5, since
ni − 2 ≤ |G| − 1 and G is not an elementary 2-group.

Let

F =(e1 + S1)(e2 + S2)(e3 + S3)(e1 + e3)(e1 − e3)

(e1 + e2 + g2)(−e1 + e2 + g1 + g2)(e2 + e3 + g1 + g2)(−e2 + e3).

We note that |F | = n1 + n2 + n3 and σ(F ) = g1 + g2 + g3. Thus,

(g1g2g3)−1AF

has sum 0, length |A| − 3 + n1 + n2 + n3, and its cumulative multiplicity
is at most k. To establish our claim it remains to show that (g1g2g3)−1AF
is a minimal zero-sum sequence. We observe that to show this it suffices
to show that for each 1 6= B | F with σ(π(B)) = 0, we have σ(B) ∈
Σ(g1g2g3), and σ(B) = g1 + g2 + g3 if and only if B = F . Note that,
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since g1g2g3 is a subsequence of a minimal zero-sum sequence, we have that
σ(T ) 6= g1 + g2 + g3 for each non-empty and proper subsequence of g1g2g3.

We first determine all minimal zero-sum subsequences of

π(F ) = en1−2
1 en2−2

2 en3−2
3 (e1+e3)(e1−e3)(e1+e2)(−e1+e2)(e2+e3)(−e2+e3).

Let C | π(F ) be a minimal zero-sum subsequence, and let C+, C− denote
the subsequence of elements of the form ei + ej and ei − ej (where i 6= j),
respectively. We note that C+C− is non-empty. Moreover, it follows that

(7.1) πi(σ(C+C−)) 6= ei for i ∈ [1, 3].

We distinguish cases according to |C−|. Throughout, the argument below
let i, j, k be such that {i, j, k} = {1, 2, 3}; note that not for each choice of
i, j, k all sequences below exist.
Case 0: |C−| = 0. Then, by (7.1), |C+| = 3 and C = en1−2

1 en2−2
2 en3−2

3 (e1 +
e3)(e1 + e2)(e2 + e3) = C0.
Case 1: |C−| = 1. For C− = −ei+ej , we get that ei+ej | C+ or ej+ek | C+.

In the former case, it follows that C = (−ei+ej)(ei+ej)e
nj−2
j = Cj1 . In the

latter case, it follows that C = (−ei+ej)(ej+ek)(ek+ei)e
nj−2
j enk−2

k = Cj,k1 .

Case 2: |C−| = 2. We have C− = (−ei + ej)(−ej + ek). It follows that, to
fulfill (7.1) for k, ek + ei | C+ or ek + ej | C+.

In the latter case, it follows that ej + ei | C+, to fulfill (7.1) for j;
and ei + ek - C+. Thus we get C = (−ei + ej)(−ej + ek)(ek + ej)(ej +

ei)e
nj−2
j enk−2

k = Cj,k2 . While, in the former case it follows that C = (−ei +

ej)(−ej + ek)(ei + ek)e
nk−2
k = Ck2 .

Case 3: |C−| = 3. We have C− = (−e1 + e2)(−e2 + e3)(e1 − e3). This is a
zero-sum sequence. So, C = C− = C3.

This completes our classification of minimal zero-sum sequences.
Let 1 6= B | F and B 6= F such that π(B) is a zero-sum sequence. We

assert that π(B) or π(B−1F ) is a minimal zero-sum sequence. Assume not.
Then π(F ) = A1 . . . Am with minimal zero-sum sequences Ai where m ≥ 4.
Since each Ai is either equal to C0 or contains at least one element of C−,
it follows in view of |C−| = 3 that, say, A1 = C0. Yet, this implies that
C3 = A−1

1 π(F ) = A2 . . . Am, a contradiction.
Thus, since σ(F ) = g1 + g2 + g3 and in view of the comments above, in

order to show that for each 1 6= B | F with σ(π(B)) = 0 and B 6= F , we
have σ(B) ∈ Σ(g1g2g3) \ {g1 + g2 + g3}, it suffices to show that σ(D) ∈
{g1, g2, g3, g1 + g2, g1 + g3, g2 + g3} for each D | F such that π(D) is a
minimal zero-sum sequence.

We observe that for each minimal zero-sum sequence of π(F ) in view
of our classification (note that each such sequence contains ei either with
multiplicity ni−2 or 0) there exist a unique subsequence of F whose image
under π is this minimal zero-sum subsequence.
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Hence, it suffices to check explicitly the condition σ(D) ∈ {g1, g2, g3, g1 +
g2, g1 +g3, g2 +g3} for the unique preimage of each of the minimal zero-sum
sequences of π(F ) that we determined explicitly.

We omit the details of this routine computation. �

We continue with the result ‘adding’ two cyclic components.

Proposition 7.2. Let G be a finite abelian group with exp(G) ≥ 3, k ∈
N0 ∪ {∞}, and n1, n2 ∈ N \ {1, 2} with ni ≤ |G|+ 1. Then

SDk(G⊕ Cn1 ⊕ Cn2) ≥ SD2
k+2(G) + (n1 − 1) + (n2 − 1)

where SD2
k+2(G) is the maximum length of a sequence A ∈ k+2A(G) such

that there exist distinct g, h ∈ G such that cm((gh)−1A) ≤ k.

Proof. Let π denote the canonical projection from G⊕Cn1 ⊕Cn2 to Cn1 ⊕
Cn2 . Let {e1, e2} be an independent generating set of Cn1 ⊕ Cn2 with
ord(ei) = ni.

Let A ∈ k+2A(G) such that there exist distinct g, h ∈ G with

cm((gh)−1A) ≤ k;

by our assumption on G such a sequence exists.
For i ∈ [1, 2], let Si ∈ 0F(G) with |Si| = ni − 2 and σ(S1) = g and

σ(S2) = 0 (these exist by Lemma 4.5). Now, let F = (e1 + S1)(e2 +
S2)(e1 + e2)(e1 + e2 + h− g)(e1 − e2)(−e1 + e2 + g).

We note that cm((gh)−1AF ) ≤ k and σ((gh)−1AF ) = 0. It thus remains
to show that (gh)−1AF is a minimal zero-sum sequence. Let D | (gh)−1AF
be a non-empty zero-sum subsequence; let D = D1D2 such that D1 |
(gh)−1A and D2 | F . We have to show that D = (gh)−1AF . Since (gh)−1A
is zero-sumfree, it follows that D2 is non-empty. If D2 = F , the claim
follows, since σ((gh)−1A) = −g − h = −σ(F ). So, suppose D2 6= F .

We note that σ(π(D2)) = 0. It follows that π(D2) ∈ {(−e1 + e2)(e1 −
e2), (−e1 + e2)(e1 + e2)en2−2

2 , (e1− e2)(e1 + e2)en1−2
1 , (e1 + e2)2en1−2

1 en2−2
2 }.

This implies that σ(D2) ∈ {g, h}; note that D2 is determined by π(D2) up
to at most one element, namely (e1 + e2) and (e1 + e2 + g). Yet, this yields
a contradiction to σ(D1) = −σ(D2), since −g,−h /∈ Σ((gh)−1A) as A is a
minimal zero-sum sequence. �

In the following result we summarize the implications of these results, for
determining lower bounds for the Olson and the Strong Davenport constant
for homocyclic groups; for a discussion of the quality of these bounds see
the following section. Results along the lines of those established in Section
5 could be obtained as well; yet, to avoid technicalities, we only address
this important special case.
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Theorem 7.3. Let n, r ∈ N and suppose n ≥ 3 and r ≥ 4. Then, for each
k ∈ N0,

SDk(C
r
n) ≥ SDk+r−1(Cn) + (r − 1)(n− 1).

In particular, SDk(C
r
n) is at least

D∗(Crn)−max

{
0, n− k − r + 1−

⌊
−1 +

√
1 + 8(max{n− k − r + 1, 0})

2

⌋}
Moreover, if D(Crn) = D∗(Crn), then, for r ≥ n− k,

SDk(C
r
n) = D∗(Crn).

Additionally, SDk(C
3
n) is at least

D∗(C3
n)−max

{
1, n− k − 2−

⌊
−1 +

√
1 + 8 max{n− 3− k, 0}

2

⌋}
.

Proof. We proceed by induction on r. For r = 4, the assertion is merely
Proposition 7.1. Assume the assertion holds for some r ≥ 4. By Corollary
4.7, we get that SDk(C

r+1
n ) ≥ SDk+1(Crn)+n−1. By induction hypothesis,

SDk+1(Crn) ≥ SDk+1+(r−1)(Cn)+(r−1)(n−1). Thus, the claim follows. To
get the ‘in particular’-statement, we use the lower bound on SDk+r−1(Cn)
established in Lemma 4.4. Finally, the ‘moreover’-statement follows by the
just established lower bound, which in this case is D∗(Crn), and the fact
that SDk(C

r
n) ≤ D(Crn) = D∗(Crn); the former inequality by Lemma 3.2 and

the latter equation by assumption.
To prove the ‘additionally’-statement, it suffices, by Proposition 7.2, to

show that (for the definition of SD2
k+2(Cn) see this proposition)

SD2
k+2(Cn) ≥ min

{
n− 1, 2 + k +

⌊
−1 +

√
1 + 8 max{n− 3− k, 0}

2

⌋}
.

Let e be a generating element. For k ≥ n − 3, we set A = e(2e)en−3, and

for k < n − 3, we set A = e(2e)ek
∏`−1
i=1(ie)(xe) where ` ∈ N is maximal

with `(`+ 1)/2 ≤ n− 3− k and x = n− k − `(`− 1)/2. �

Recalling that O(C2
p) = (p− 1) + 1 + b−1+

√
1+8(p−1)

2 c for prime p > 6000
and by the just established result, we see that

O(C3
p) ≥ 2(p− 1) + 3 +

⌊
−1 +

√
1 + 8(p− 4)

2

⌋

> 2(p− 1) + 1 +

⌊
−1 +

√
1 + 8(p− 1)

2

⌋
= (p− 1) + O(C2

p),

showing that equality in (1.1) fails already for r = 3 for all but finitely many
primes. Evidently, equality holds for p = 2, yet this might well be the only



Olson and Strong Davenport constants 29

case (this would follow, if O(C2
p) = (p− 1) + O(Cp) for all primes, which is

conceivable; for results for primes up to 7 see the following section).
We end this section by pointing out that the construction of Proposition

7.1 is also of relevance for sequences.

Remark 7.4. Let n ≥ 3 and C4
n = ⊕4

i=1〈ei〉. The sequence

(e1 + S1)(e2 + S2)(e3 + S3)en−3
4

(e1 + e3)(e1 − e3)(e1 + e2 + e4)(−e1 + e2 + 2e4)(e2 + e3 + 2e4)(−e2 + e3),

where S1, S2, S3 ∈F(〈e4〉) with |Si| = n− 2 and σ(S1) = e4, σ(S2) = −2e4,
and σ(S3) = −e4 is a minimal zero-sum sequence of length D∗(C4

n). Thus,
if D(C4

n) = D∗(C4
n), then it is a minimal zero-sum sequence of maximum

length.

Up to now, to the best of our knowledge, each known examples of a
minimal zero-sum sequence of maximal length over Crn, for arbitrary r, n ∈
N, was of the form A = (e+S)g−1C, where Crn = 〈e〉⊕H with ord(e) = n,
C is a minimal zero-sum sequence of maximal length over H ∼= Cr−1

n , g | C,
and S is a sequence over H of length n with σ(S) = g. (For non-homocyclic
groups, other constructions are well-known.)

Remark 7.4 shows that already for r = 4, and even in case p is an odd
prime, minimal zero-sum sequences of a different form exist. In contrast,
note that for r ≤ 2, it is know (cf. the discussion around Corollary 5.7) that
all minimal zero-sum sequences of maximal length can be obtained by this
‘standard’ construction. In view of this, it seems like a particularly inter-
esting question, whether or not for r = 3 all minimal zero-sum sequences
of maximal length can be obtained by this ‘standard’ construction. Unfor-
tunately, very little is known. For n = 2 this almost trivially holds (in fact,
not only for r = 3 but for arbitrary r), yet for n = 3 this was only recently
shown to be the case, via a somewhat lengthy argument (see [16, Lemma
5.4]). Beyond these very special cases, nothing seems to be known.

8. Groups with small exponent, computational results, and
discussion

We determine the exact value of the Olson constant and the Strong
Davenport constant for groups with very small exponent in an absolute
sense, namely exp(G) ≤ 5. We point out that for our reasoning it is not only
important that the exponent is ‘small,’ but it is inevitable that exp(G) is a
prime power. In particular, we consider it as significantly more challenging
to extend our result, say, to exp(G) = 6 than to exp(G) = 7.

For groups with exp(G) ≤ 3 considerable parts of the result are known
(see [1, 7, 16, 30]; for partial result for groups of exponent 4 and 5 see
[26, 30]). We give a proof that stresses which parts of the result follow by
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the methods detailed before and which require an additional argument; we
do so even if a direct argument would be simpler.

Theorem 8.1. Let r ∈ N0.

(1) For r 6= 1, we have O(Cr2) = SD(Cr2) = D∗(Cr2) = r + 1. And,
O(C2) = 2 and SD(C2) = 1.

(2) For r ≥ 4, we have O(Cr3) = SD(Cr3) = D∗(Cr3) = 2r + 1. And,

• O(C3
3 ) = D∗(C3

3 ) = 7 and SD(C3
3 ) = 6;

• O(C2
3 ) = 4 and SD(C2

3 ) = 3;
• O(C3) = SD(C3) = 2.

(3) For r ≥ 5, we have O(Cr5) = SD(Cr5) = D∗(Cr5) = 4r + 1. And,

• O(C4
5 ) = D∗(C4

5 ) = 17 and SD(C4
5 ) = 16;

• O(C3
5 ) = 12 and SD(C3

5 ) = 11;
• O(C2

5 ) = 7 and SD(C2
5 ) = 6;

• O(C5) = 3 and SD(C5) = 2.

(4) For G a finite abelian group with exp(G) = 4, we have O(G) =
SD(G) = D∗(G), with the following exceptions:

• O(C3
4 ) = SD(C3

4 ) = 9;
• O(C2

4 ) = 6 and SD(C2
4 ) = 5;

• O(C4) = 3 and SD(C4) = 2;
• O(C2 ⊕ C2

4 ) = D∗(C2 ⊕ C2
4 ) = 8 and SD(C2 ⊕ C2

4 ) = 7;
• O(C2

2 ⊕ C4) = D∗(C2
2 ⊕ C4) = 6 and SD(C2

2 ⊕ C4) = 5;
• O(C2 ⊕ C4) = SD(C2 ⊕ C4) = 4.

All the values in this result match one of our lower bound constructions,
except for C2

2 , where the particular phenomenon discussed after Corollary
4.7 is relevant, which we ignored on purpose.

Proof. We recall (see Lemma 3.2) that SD(G) ≤ O(G) ≤ D(G); and for all
groups appearing in this result, since they are p-groups, we have D(G) =
D∗(G).
1. By Corollary 5.5, the result is clear for r ≥ 3 for the Strong Davenport
constant and for r ≥ 2 for the Olson constant. Yet, also SD(C2

2 ) ≥ 3, note
the example (e1 + e2)e1e2 for independent e1 and e2. For C2 = {0, e} there
are precisely two minimal zero-sum sequences, namely 0 and e2, and the
claim follows.
2. For r ≥ 4, and in addition for r = 3 in case of the Olson constant,
the claim follows again by Corollary 5.5. Now, the remaining cases can be
solved by computation (cf. below for details), or by the following argument.

In [16] it is proved that SD(C3
3 ) = 6. By Lemma 3.3 and Corollary 5.7

we know that 4 ≤ O(C2
3 ) < D(C2

3 ) = 5. And, 2 ≤ SD(C3) ≤ O(C3) < 3;
note that for C3 = {0, e,−e}, the only minimal zero-sum sequences are 0,
(−e)e, and (±e)3.
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It remains to show that SD(C2
3 ) = 3. By Lemma 3.3 and O(C2

3 ) = 4,
it follows that 4 ≥ SD(C2

3 ) ≥ 3. Thus, it suffices to show that SD(C2
3 ) 6=

4. Suppose A ∈ 0A(C2
3 ) with |A| = 4. Then A certainly contains two

independent elements e1 and e2. Let g, h ∈ C2
3 \ {e1, e2} such that A =

e1e2gh. We note that g, h /∈ {0,−e1,−e2,−e1 − e2} and {g, h} 6= {−e1 +
e2, e1 − e2}, as otherwise we would get a proper zero-sum subsequence. So
we have that {g, h} is equal to {e1 + e2,−e1 + e2} or {e1 + e2, e1− e2}. Yet,
neither choice yields an element of 0A(C2

3 ).
3. By Theorem 7.3 the result is clear for r ≥ 5, and O(C4

5 ) = D∗(C4
5 ) follows

as well. The remaining cases are handled by computation (cf. below for
details; also see [30] for O(C2

5 ) and O(C5)).
4. For G with rank at least 5 and C4

4 the assertion follows by Corollary 5.5
and Theorem 7.3, respectively. By Corollary 5.7 we know that SD2(C2 ⊕
C4) = D∗(C2⊕C4). Thus, it follows by Proposition 5.3 that O(G) = D∗(G)
for any group of exponent 4 and rank at least 3, having C2⊕C4 as a direct
summand, and likewise SD(G) = D∗(G) for any group of exponent 4 and
rank at least 4.

The remaining values are again determined by computation. �

We have computed the values for two additional groups.

Remark 8.2.

• SD(C3
6 ) = O(C3

6 ) = 14.
• SD(C3

7 ) = 16 and O(C3
7 ) = 17.

We give a brief indication on how our computation were carried out; we
keep this discussion brief, as the approach is very similar to that of [18].

Based on the ideas from [18], one can formulate an algorithm for the
computation of the Olson and the Strong Davenport constants for a finite
abelian group G. A naive brute force search over all subsets of G is infeasi-
ble, already for quite small G. But with a slight variant of the algorithms
from [18]—roughly speaking, constructing zero-sumfree sets recursively—
we can avoid most of the redundant checks and therefore speed up the
computation dramatically. For additional details on further speeding up
these types of algorithms by pre-computations, special alignment of the
pre-computed data, and on the parallelization aspects, the reader is re-
ferred to [18, Section 3].

Moreover, not starting the recursive construction with the empty set, but
with a suitably chosen set, can yield a significant speed up. For example,
it is easy to see that every extremal set contains a generating set. In case
the group is an elementary p-groups this set is independent, and thus we
can fix some independent generating set, and use this set as a basis for
our recursive construction. However, for other groups the situation is more
complex. In particular, for C3

6 we merely took a set consisting of a single
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element of order 6 as basis for our recursive construction. This explains the
relation between the running-times for C3

6 and C3
7 given below.

All computations were performed on a SUN X4600 node with 8 AMD
QuadCore-Opteron 8356 (2.3GHz) CPUs and 256GB RAM running with
up to 32 openmp threads. In Table 1, we give the computation times (for
the non-trivially fast examples, except for C4

5 , which is discussed below).

group cputime (hh:mm:ss)
C3

4 00:00:18
C3

5 00:00:35
C3

6 2169:30:59
C3

7 262:21:20
Table 1. Statistics of the computations for the non-
trivially fast examples. The cputime is given with respect
to a single AMD Opteron 8356 (2.3GHz) CPU core.

Only using the approach described above the computations in C4
5 would

have lasted much too long. However, a more detailed investigation of the
problem of choosing a suitable starting set allowed us to reduce the running-
time by about a factor of twenty, which made the computations feasible
(given the computational resources we had at our disposal). The under-
lying idea is simple. As mentioned above, every extremal set will contain
an independent generating set and, evidently, an additional element. We
say that two generating subsets A1, A2 of C4

5 of cardinality 5 are equivalent
if there exists an automorphism f of C4

5 such that f(A1) = A2. We de-
termine a set of representatives for the equivalence classes induced by this
equivalence relation. It then suffices to carry out our recursive construction
for each of these representatives. In addition, we can ignore some of these
representatives right away. On the one hand, we can obviously ignore those
that are not zero-sumfree (the gain from doing so is minimal, as the recur-
sive construction would stop instantly, we merely mention it in order not
to include them in the list below). On the other hand, we can also exclude
those sets containing two pairwise linearly dependent elements, as in view
of our lower bounds we only have two show that SD(C4

5 ) < D(C4
5 ) = 17, and

it is known that in elementary p-groups distinct elements in a zero-sumfree
sequence of maximum length are linearly independent (see [11, Theorem
10.3]).
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In this way, we established that it suffices to run our recursive construc-
tion starting from each of the following sets:


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1

 , g

 ,

where g is one of the following 26 elements:
0
0
1
1

 ,


0
0
1
2

 ,


0
0
2
2

 ,


0
0
2
4

 ,


0
1
1
1

 ,


0
1
1
2

 ,


0
1
1
3

 ,


0
1
1
4

 ,


0
1
2
2

 ,


0
1
2
3

 ,


0
2
2
2

 ,


0
2
2
4

 ,


0
2
4
4

 ,


1
1
1
1

 ,


1
1
1
2

 ,


1
1
1
3

 ,


1
1
1
4

 ,


1
1
2
2

 ,


1
1
2
3

 ,


1
1
2
4

 ,


1
1
3
3

 ,


1
2
2
2

 ,


2
2
2
2

 ,


2
2
2
4

 ,


2
2
4
4

 ,


2
4
4
4


This test showed that SD(C4

5 ) = 16 < 17 = O(C4
5 ). In Table 2, we give

a table with the computation times.
In view of the various lower bound constructions presented in this paper,

evidently the question arises: how close to the true values are these bounds?
We already gave some indications throughout the paper, and make some
additional remarks. Although, we hope that the constructions presented in
this paper are flexible enough to yield good bounds in general and the exact
value for various groups, they obviously do not yield the exact value for all
groups (see the remark after Corollary 5.6). And, as we saw in Section
6, even in applying our method there is considerable flexibility, so that in
certain cases the lower bounds we mentioned explicitly can be improved
with the methods at hand.

Yet, for certain groups, in particular for elementary p-groups, neither of
the above problems arises. We state our opinion on this case in more detail
below.

For rank 3, we have some, though admittedly not too much (indeed, as
we were aware of most of the explicit results before establishing the general
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number cputime number cputime number cputime
1 4612 10 2010 19 1919
2 2175 11 1319 20 2093
3 1529 12 1640 21 1859
4 2001 13 1964 22 1770
5 2879 14 2219 23 1261
6 1928 15 1770 24 1575
7 2172 16 2075 25 1812
8 1924 17 2794 26 1893
9 1894 18 1775

Table 2. Statistics of the 26 test runs. In total, the com-
putation took about 52869 hours of cputime. The cputime
is given in hours with respect to a single AMD Opteron 8356
(2.3GHz) CPU core.

lower bound, this evidence is even weaker), computational evidence that
our constructions are optimal. We do not consider it as strong enough to
justify to conjecture that the bound established in Theorem 7.3 is sharp.
Still, we would be surprised if it were not sharp.

For rank 4 and greater, there is not even computational evidence except
for C4

5 and again we were aware of this example before coming up with
our construction and, indeed, used this knowledge as motivation for our
construction. Though, we evidently hope that the bound is sharp, this
is almost merely wishful thinking. A reason why we still think that this
might be true, despite the fact that up to rank 4 we encountered a new
phenomenon for each rank, is the fact that the choice of the set in C3

p ⊕Cp
used in Proposition 7.1 is good enough to expand it to a zero-sum sequence
of maximal length in C4

p (see Remark 7.4) and thus Crp for r ≥ 4. Thus, with
this construction we overcame the ‘irregularity’ arising from the fact that
we cannot apply Corollary 4.7 with m = p for Cp ⊕ Cp, i.e., when passing
from rank one to rank two, and we hope that this was the only remaining
obstacle towards a uniform formula for these invariants. As said, this hope
is vague. Yet, at least we believe that if there is some r0 such that there is a
‘uniform’ formula for SD(Crp) and O(Crp) for all r ≥ r0 (and all p ≥ p(r0)),
then this r0 is already 4 and this formula is the lower bound we established.
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