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Abstract. The investigation and classification of non-unique factorization phenomena have attracted
some interest in recent literature. For finitely generated monoids, S.T. Chapman and P. Garćıa-Sánchez,

together with several co-authors, derived a method to calculate the catenary and tame degree from the

monoid of relations, and they applied this method successfully in the case of numerical monoids. In this
paper, we investigate the algebraic structure of this approach. Thereby, we dispense with the restriction

to finitely generated monoids and give applications to other invariants of non-unique factorizations, such
as the elasticity and the set of distances.

1. Introduction

An integral domain (more generally, a commutative, cancellative monoid) is called atomic if every
non-zero non-unit has a factorization into irreducible elements, and it is called factorial if this factorization
is unique up to ordering and associates. Non-unique factorization theory is concerned with the description
and classification of non-unique of factorization phenomena in atomic domains. It has its origin in
algebraic number theory—the ring of integers of an algebraic number field being atomic but generally not
factorial—but in the last decades it became an autonomous theory with many connections to zero-sum
theory, commutative ring theory, module theory, and additive combinatorics. We refer to [6] for a recent
presentation of the various aspects of the theory.

To describe these phenomena, various invariants have been studied in the literature, including the
catenary degree, the tame degree, the elasticity, and the set of distances (for some new results, see, e.g.,
[5] and [1]; for an overview of known results and additional references see, e.g., the monograph [6]; for a
statement of the formal definitions, see section 2).

For an integral domain, non-unique factorization phenomena only concern the multiplicative monoid of
that domain. Thus we will derive the theory for commutative, cancellative monoids, only.

The monoid of relations associated to a monoid and a certain invariant µ(·) have been used to study
the above mentioned invariants. Investigations of this type started only fairly recently. In [10], such
investigations were carried out for finitely generated monoids using the results from [4] and [2]. In [3] and
[7], these results, and expansions thereof, were applied in the investigation of numerical monoids, which
are (certain) finitely generated submonoids of the non-negative integers; for a detailed exposition of the
theory of numerical monoids and applications, see, e.g., the monograph [9].

In the present paper, we focus on the study of the algebraic structure of this method: i.e., the invariant
µ(·), its definition, and the monoid of relations. By this more algebraic-structural approach, we are able
to extend the results to not necessarily finitely generated monoids. Furthermore, we address some new
aspects. In particular, our investigations include the elasticity and the set of distances.

Moreover, these abstract characterizations, in particular Proposition 14, are used successfully for
investigations on the arithmetic of non-principal orders of algebraic number fields in [8]. Details however,
are too involved to be included here. So the interested reader must be referred to a forthcoming paper
dealing that subject.

2. Preliminaries

In this note, our notation and terminology will be consistent with [6]. Let N denote the set of positive
integers and let N0 = N ] {0}. For integers n, m ∈ N0, we set [n,m] = {x ∈ N0 | n ≤ x ≤ m}. By
convention, the supremum of the empty set is zero and we set 0

0 = 1. The term “monoid” always means a
commutative, cancellative semigroup with unit element. We will write all monoids multiplicatively. For a
monoid H we denote by H× the set of invertible elements of H. We call H reduced if H× = {1} and
call Hred = H/H× the reduced monoid associated with H. Of course, Hred is always reduced, and the
arithmetic of H is determined by Hred. Let H be an atomic monoid. We denote by A(H) its set of atoms,
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by A(Hred) the set of atoms of Hred, by Z(H) = F(A(Hred)) the free monoid with basis A(Hred), and by
πH : Z(H)→ Hred the unique homomorphism such that πH |A(Hred) = id. We call Z(H) the factorization
monoid and πH the factorization homomorphism of H. For a ∈ H, we denote by Z(a) = π−1H (aH×) the
set of factorizations of a and denote by L(a) = {|z| | z ∈ Z(a)} the set of lengths of a.

In the following, we briefly recall the definitions of all the invariants of non-unique factorization to be
dealt with in this paper.

Definition 1. Let H be an atomic monoid. For a ∈ H we set

ρ(a) =
sup L(a)

min L(a)
, and we call ρ(H) = sup{ρ(a) | a ∈ H} the elasticity of H.

Definition 2. Let H be an atomic monoid. For a ∈ H, the catenary degree c(a) denotes the smallest
N ∈ N0 ∪ {∞} with the following property:

For any two factorizations z, z′ ∈ Z(a) there exists a finite sequence of factorizations (z0, z1, . . . , zk)
in Z(a) such that z0 = z, zk = z′, and d(zi−1, zi) ≤ N for all i ∈ [1, k].

If this is the case, we say that z and z′ can be concatenated by an N -chain.
Also, c(H) = sup{c(a) | a ∈ H} is called the catenary degree of H.

Definition 3. Let H be an atomic monoid. For a ∈ H and x ∈ Z(H), let t(a, x) denote the smallest
N ∈ N0 ∪ {∞} with the following property:

If Z(a)∩ xZ(H) 6= ∅ and z ∈ Z(a), then there exists some z′ ∈ Z(a)∩ xZ(H) such that d(z, z′) ≤ N .

For subsets H ′ ⊂ H and X ⊂ Z(H), we define

t(H ′, X) = sup{t(a, x) | a ∈ H ′, x ∈ X},

and we define t(H) = t(H,A(Hred)). This is called the tame degree of H.

Definition 4. Let ∅ 6= L ⊂ N0 be a non-empty subset and H an atomic monoid.

1. A positive integer d ∈ N is called a distance of L if there exists some l ∈ L such that L∩ [l, l+ d] =
{l, l + d}. We denote by 4(L) the set of distances of L. Note that 4(L) = ∅ if and only if |L| = 1.

2. We call

4(H) =
⋃
a∈H
4(L(a)) ⊂ N

the set of distances of H.

3. µ(H)

Definition 5 (R-relation, cf. [7, end of page 3]). Let H be an atomic monoid. Two elements z, z′ ∈ Z(H)
are R-related if

• either z = z′ = 1
• or there exists a finite sequence of factorizations (z0, z1, . . . , zk) such that z0 = z, zk = z′, πH(z) =
πH(zi), and gcd(zi−1, zi) 6= 1 for all i ∈ [1, k].

We call this sequence an R-chain concatenating z and z′. If two elements z, z′ ∈ Z(H) are R-related,
we write z ≈ z′.
Since in our general setting the number of factorizations of an element a ∈ H is not necessarily finite, the
number of different R-equivalence classes of Z(a) is potentially infinite, too.

Definition 6 (µ(a), µ(H), cf. [7, first paragraph, page 4]). Let H be an atomic monoid. For a ∈ H let
Ra denote the set of R-equivalence classes of Z(a) and, for ρ ∈ Ra, let |ρ| = min{|z| | z ∈ ρ}. For a ∈ H,
we set

µ(a) = sup{|ρ| | ρ ∈ Ra} ≤ sup L(a)

and define

µ(H) = sup{µ(a) | a ∈ H, |Ra| ≥ 2}.

Then µ(H) = 0 if and only if |Ra| = 1 for all a ∈ H.

Lemma 7. Let H be an atomic monoid. Then

µ(H) ≥ c(H).
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Proof. We show that, for all N ∈ N0, all a ∈ H, and all factorizations z, z′ ∈ Z(a) with |z| ≤ N and
|z′| ≤ N , there is a µ(H)-chain from z to z′. We proceed by induction on N . If N = 0, then z = z′ = 1 and
d(z, z′) = 0 ≤ µ(H). Suppose N ≥ 1 and that, for all a ∈ H and all z, z′ ∈ Z(a) with |z| < N and |z′| < N ,
there is a µ(H)-chain from z to z′. Now let a ∈ H and let z, z′ ∈ Z(a) with |z| ≤ N and |z′| ≤ N . If z 6≈ z′,
then there are z′′, z′′′ ∈ Z(a) such that z′′ ≈ z, z′′′ ≈ z′, and z′′ and z′′′ are minimal in their R-classes
with respect to their lengths. Since gcd(z′′, z′′′) = 1, we find d(z′′, z′′′) = max{|z′′|, |z′′′|} ≤ µ(a) ≤ µ(H).
Now it remains to show that, for any two factorizations z, z′ ∈ Z(a) with z ≈ z′, |z| ≤ N , and |z′| ≤ N ,
there is a µ(H)-chain concatenating them. By definition, there is an R-chain z0, . . . , zk with z = z0,
z′ = zk, and gi = gcd(zi−1, zi) 6= 1 for all i ∈ [1, k]. By the induction hypothesis, there is a µ(H)-chain
from g−1i zi−1 to g−1i zi for all i ∈ [1, k], and thus there is a µ(H)-chain from zi to zi−1 for i ∈ [1, k]; thus
there is a µ(H)-chain from z to z′. �

The following Proposition 8 is based on the second part of the proof of [3, Theorem 3.1].

Proposition 8. Let H be an atomic monoid and a ∈ H with |Ra| ≥ 2. Then

c(a) ≥ µ(a).

In particular, c(H) ≥ µ(H).

Proof. Let a ∈ H be such that |Ra| ≥ 2, let N ∈ N0 be such that µ(a) ≥ N , and let z, z′ ∈ Z(a)
be such that z 6≈ z′, |z| ≥ N , and z is minimal in its R-equivalence class with respect to its length.
There exists a c(a)-chain of factorizations z0, . . . , zk with z0 = z and zk = z′. As z 6≈ z′, there
exists some i ∈ [1, k] minimal such that z ≈ zj for all j < i and z 6≈ zi; then clearly zi−1 6≈ zi,
and therefore gcd(zi−1, zi) = 1; thus d(zi−1, zi) = max{|zi−1|, |zi|}. Since µ(a) = |z0|, z0 is minimal
in its R-class with respect to its length by definition. Thus we have |z0| ≤ |zi−1|. Then we obtain
N ≤ |z| = |z0| ≤ max{|zi−1|, |zi|} = d(zi−1, zi) ≤ c(a). As N was arbitrary, the assertion follows. �

Now we get the result from [3, Theorem 3.1] in our slightly more general setup.

Corollary 9. Let H be an atomic monoid. Then

c(H) = µ(H).

Proof. Clear by Lemma 7 and Proposition 8. �

4. The monoid of relations MH

Definition 10. Let H be an atomic monoid. We call

MH = {(x, y) ∈ Z(H)× Z(H) | πH(x) = πH(y)},

the monoid of relations.
MH , as defined, is the monoid of relations of Hred.

Lemma 11. Let H be an atomic monoid, P ⊂ Hred be the set of prime elements of Hred, and T =
A(Hred) \ P.

1. MH = {(qx, qy) | q ∈ F(P), x, y ∈ F(T )} and for all q ∈ F(P) and x, y ∈ Z(H) we have
(qx, qy) ∈MH if and only if (x, y) ∈MH .

2. The homomorphism ϕ : MH → F(P) × F(T ) × F(T ), ϕ((qx, qy)) = (q, x, y) with q ∈ F(P) and
x, y ∈ F(T ) is a divisor theory.

3. MH is a Krull monoid with class group q([T ]), where q([T ]) denotes the quotient group of the
monoid generated by the elements in T , and the set of all classes containing primes is given by
{v, v−1 | v ∈ T}∪{1} if P 6= ∅, i.e. H posseses at least one prime element, and by {v, v−1 | v ∈ T}
otherwise.
In particular, the set of classes containing primes is finite if and only if T is finite.

Proof.

1. Obiously, we have Z(H) = F(P) × F(T ). Let (qx, q′y) ∈ Z(H) × Z(H) with q, q′ ∈ F(P) and
x, y ∈ F(T ). Then (qx, q′y) ∈ MH if and only if πH(qx) = πH(q′y). Since q, q′ are products of
prime elements we find q = q′, and thus πH(x) = πH(y).

2. First we show that ϕ is a divisor homomorphism. Let (q1x1, q1y1), (q2x2, q2y2) ∈MH be such that
ϕ(q1x1, q1y1) = (q1, x1, y1) | (q2, x2, y2) = ϕ(q2x2, q2y2) in F(P)×F(T )×F(T ). Then there exists
(q, x, y) ∈ F(P)×F(T )×F(T ) such that (q1, x1, y1)(q, x, y) = (q2, x2, y2). Now we apply πH and
find

πH(y1)πH(x) = πH(x1)πH(x) = πH(x1x) = πH(x2) = πH(y2) = πH(y1y) = πH(y1)πH(y).



4

Thus πH(x) = πH(y), and therefore (qx, qy) ∈MH and (q1x1, q1y1) | (q2x2, q2y2) in MH .
Now we prove that ϕ is a divisor theory. Since F(P)×F(T )×F(T ) = F(U) with U = {(p, 1, 1) | p ∈
P}∪{(1, t, 1), (1, 1, t) | t ∈ T}, we must show that any elment of U is the greatest common divisor of
the image of a finite subset of MH . Let (p, 1, 1) ∈ U . Since ϕ(p, p) = (p, 1, 1), we are done. Let u ∈
A(H) be not prime such that (1, uH×, 1) ∈ U . Since u ∈ A(H) is not prime, there are a, b ∈ H\H×
not divisible by any prime such that u | ab but u - a and u - b. Now let z ∈ Z(u−1ab), x ∈ Z(a),
and y ∈ Z(b) with uH× - xy. Then we find (1, uH×, 1) = gcd(ϕ(zuH×, xy), ϕ(uH×, uH×)).

3. It is clear by part 2 and [6, Theorem 2.4.8.1] that MH is a Krull monoid. Now we compute its
class group. We define the map

φ :

{
F(P)×F(T )×F(T ) → q([T ])

(q, x, y) 7→ πH(x)(πH(y))−1.

Obviously, φ is a well-defined monoid homomorphism and φ is surjective. By [6, Proposition
2.5.1.4], it is sufficient to show that φ−1(1) = ϕ(MH) in order to prove that the class group of MH

equals q([T ]). Now let (q, x, y) ∈ F(P)×F(T )×F(T ) be such that φ(q, x, y) = 1. Then we find

φ(q, x, y) = πH(x)πH(y)−1 = 1 ⇔ πH(x) = πH(y) ⇔ (x, y) ∈MH ⇔ (qx, qy) ∈MH ,

and we are done. For the last part of the proof, we calculate the set of all classes containing prime
elements of F(P) × F(T ) × F(T ). We have F(P) × F(T ) × F(T ) = F(U) with U = {(p, 1, 1) |
p ∈ P} ∪ {(1, t, 1), (1, 1, t) | t ∈ T} and find {v, v−1 | v ∈ T} ∪ {1} if P 6= ∅ and {v, v−1 | v ∈ T}
otherwise. �

As we saw in the proof of Lemma 11.2 every element of Z(H)×Z(H) can be written as greatest common
divisor of the image of at most two elements from MH . In the literature, such a Krull monoid is called a
δ1-semigroup with divisor theory; for reference, see [11] and [12].

Lemma 12. Let H be an atomic monoid. Then

A(MH) ⊂ {(uH×, uH×) | u ∈ A(H)} ∪ {(x, y) ∈MH | gcd(x, y) = 1}.

Proof. Let (x, y) ∈ A(MH) and z = gcd(x, y). If z = 1, we are done. Now assume z 6= 1. Then
z = u1 · . . . · uk for some k ∈ N and u1, . . . , uk ∈ A(Hred). Now we find (x, y) = (z, z)(xz−1, yz−1) =
(u1, u1) · . . . · (uk, uk)(xz−1, yz−1). If k ≥ 2, then (x, y) /∈ A(MH), a contradiction. If k = 1, then
(x, y) ∈ A(MH) implies (xz−1, yz−1) = (1, 1), that is, x = z = y = u1 ∈ A(Hred). �

Definition 13. Let H be an atomic monoid and MH its monoid of relations. For (x, y) ∈ MH and
X ⊂MH , we set

4̃(x, y) =
∣∣|x| − |y|∣∣ and 4̃(X) = {4̃(x, y) | (x, y) ∈ X,x 6= y}.

Now we can prove something like [3, Proposition 3.2] for the catenary degree and a similar result for
the elasticity and the set of distances.

Proposition 14. Let H be an atomic monoid.

1. c(H) ≤ sup{|x| | (x, y) ∈ A(MH)}.
2. ρ(H) = sup

{
|x|
|y|

∣∣∣ (x, y) ∈MH

}
= sup

{
|x|
|y|

∣∣∣ (x, y) ∈ A(MH)
}

.

3. 4(H) ⊂ 4̃(MH), max4(H) ≤ max 4̃(A(MH)), and min4(H) = gcd 4̃(A(MH)) = min 4̃(MH).

Proof.

1. Let a ∈ H\H× and let z, z′ ∈ Z(a) be two different factorizations of a. Then, of course, (z, z′) ∈MH .
Thus there are (x1, y1), . . . , (xk, yk) ∈ A(MH) such that (z, z′) = (x1, y1) · . . . · (xk, yk). Now we
can construct the following chain of factorizations: z = z0 and zi = zi−1x

−1
i yi for i ∈ [1, k]. Then

zk = z′. Since (xi, yi) ∈ A(MH), we find gcd(xi, yi) = 1 or xi = yi = u with u ∈ A(H) ⊂ Z(H) by
Lemma 12. This implies that either d(zi−1, zi) = max{|xi|, |yi|} or d(zi−1, zi) = 0. Thus z and
z′ can be concatenated by a max{|xi|, |yi| | i ∈ [1, k]}-chain. Since (x, y) ∈ A(MH) if and only if
(y, x) ∈ A(MH), the assertion follows.

2. For all a ∈ H, we have that Z(a)× Z(a) = MH . Thus we find

ρ(a) =
sup L(a)

min L(a)
= sup

{
|x|
|y|

∣∣∣∣x, y ∈ Z(a)

}
= sup

{
|x|
|y|

∣∣∣∣ (x, y) ∈ Z(a)× Z(a) ∩MH

}
.

The first equality now follows. Since A(MH) ⊂MH is a subset, it is clear that

sup

{
|x|
|y|

∣∣∣∣ (x, y) ∈ A(MH)

}
≤ sup

{
|x|
|y|

∣∣∣∣ (x, y) ∈MH

}
.

In order to prove equality, we show the following assertion:
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For all (x, y) ∈MH , there is (x′, y′) ∈ A(MH) such that |x
′|
|y′| ≥

|x|
|y| .

Let (x, y) ∈ MH and without loss of generality assume |x| ≥ |y|. Now there is some n ∈ N and
(xi, yi) ∈ A(MH) for all i ∈ [1, n] such that (x, y) = (x1, y1) · . . . · (xn, yn). When we pass to the
lengths, we find |x| =

∑n
i=1 |xi| and |y| =

∑n
i=1 |yi|. This yields

|x|
|y|
· |y| = |x| =

n∑
i=1

|xi| =
n∑
i=1

|xi|
|yi|
|yi| ≤

n
max
i=1

|xi|
|yi|

n∑
i=1

|yi| =
n

max
i=1

|xi|
|yi|
· |y|,

Thus we find
|x|
|y|
≤ n

max
i=1

|xi|
|yi|

.

3. Since, for all d ∈ 4(H), there exist x, y ∈ Z(H) such that |x| − |y| = d and πH(x) = πH(y), the

inclusion 4(H) ⊂ 4̃(MH) is obvious.
Now let d = max4(H). Then there exists (x, y) ∈ MH and a ∈ H such that πH(x) = aH×,
|x| − |y| = d and [|y|, |x|] ∩ L(a) = {|y|, |x|}. There are k ∈ N and (x1, y1), . . . , (xk, yk) ∈ A(MH)

such that (x, y) = (x1, y1)·. . .·(xk, yk). Since
∑k
i=1 |xi| = |x| > |y| =

∑k
i=1 |yi| there exists j ∈ [1, k]

such that |xj | > |yj |. Now we show |xj | − |yj | ≥ d. We assume to the contrary |xj | − |yj | < d. We

set z = yj
∏k
i=1,i6=j xi. Clearly, z ∈ Z(a) and |z| = |x| − (|xj | − |yj |) ∈ [|x| − (d− 1), |x| − 1] ∩ L(a),

a contradiction.
Let d = min4(H) and d′ = min 4̃(MH). Since 4(H) ⊂ 4̃(MH), d′ ≤ d is clear. Now we assume

d′ < d. Then there is (x, y) ∈MH such that 4̃(x, y) = d′ < d, a contradiction.

It remains to show that min 4̃(MH) = gcd(4̃(A(MH))). We define a map 4 : MH → Z given

by 4(x, y) = |x| − |y|. This is a homomorphism, and 4̃(x, y) = 4(x, y) for all (x, y) ∈ MH

such that |x| ≥ |y|. Since, for all (x, y) ∈ MH , we have (y, x) ∈ MH , we find 4(X) = 4̃(X) ∪
(−4̃(X)) ∪ {0} for all subsets X ⊂MH , and thus gcd(4(A(MH))) = gcd(4̃(A(MH))). Let now

d′ = gcd(4(A(MH))) ∈ N and d = min 4̃(MH). Then there are k ∈ N, n1, . . . , nk ∈ N, and
(x1, y1), . . . , (xk, yk) ∈ A(MH) such that

d′ =
k∑
i=1

ni4(xi, yi) = 4

(
k∏
i=1

(xi, yi)
ni

)
,

and since

0 < d′ =

∣∣∣∣∣
k∑
i=1

xni
i

∣∣∣∣∣−
∣∣∣∣∣
k∑
i=1

yni
i

∣∣∣∣∣ , we find d′ = 4̃

(
k∏
i=1

(xi, yi)
ni

)
.

Thus d′ ∈ 4̃(MH) Therefore d′ ≥ d. Since d′ | d, equality follows. �

Next, we mimic the ideas from [3, page 259 and Theorem 3.2].

Definition 15. Let H be an atomic monoid. For a ∈ H, we define

Aa(MH) = {(x, y) ∈ A(MH) | πH(x) = aH×}

and then set

ν(H) = sup{µ(a) | a ∈ H, Aa(MH) 6= ∅, |Ra| ≥ 2}.

Proposition 16. Let H be an atomic monoid. Then

c(H) = ν(H).

Proof. By Corollary 9, it is sufficient to show that µ(H) = ν(H). When we compare the definitions of
those two invariants, we see that the only thing we really have to show is that

{a ∈ H | Aa(MH) 6= ∅, |Ra| ≥ 2} = {a ∈ H | |Ra| ≥ 2}.

One inclusion is trivial and, for the other one, let a ∈ H be such that |Ra| ≥ 2, and let z, z′ ∈ Z(a)
be two factorizations of a such that z 6≈ z′ and such that both are minimal in their R-equivalence
classes with respect to their lengths. Now assume (z, z′) /∈ A(MH). Then there are k ≥ 2 and
(x1, y1), . . . , (xk, yk) ∈ A(MH) such that (z, z′) = (x1, y1) · . . . · (xk, yk). But now we find the following
R-chain from z to z′: z0 = z and zi = zi−1x

−1
i yi for i ∈ [1, k]. Then zk = z′ and gcd(zi−1, zi) 6= 1. Since

this is a contradiction we have (z, z′) ∈ A(MH), and thus (z, z′) ∈ Aa(MH) 6= ∅. �

Theorem 17. Let H be an atomic monoid. Then

c(H) = sup{c(a) | a ∈ H,Aa(MH) 6= ∅}.
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Proof. Obviously, we have c(H) ≥ sup{c(a) | a ∈ H,Aa(MH) 6= ∅}. Since, by Proposition 8, c(a) ≥ µ(a)
for all a ∈ H, we find by Proposition 16, that

sup{c(a) | a ∈ H,Aa(MH) 6= ∅} ≥ sup{µ(a) | a ∈ H,Aa(MH) 6= ∅}
≥ sup{µ(a) | a ∈ H,Aa(MH) 6= ∅, |Ra| ≥ 2}
= ν(H) = c(H). �

Definition 18. Let H be an atomic monoid. For a non-empty subset ∅ 6= Y ⊂ Z(H) and a factorization
x ∈ Z(H), we set

d(x, Y ) = min{d(x, y) | y ∈ Y }
for the distance between x and Y .

Theorem 19. Let H be an atomic monoid and u ∈ A(H).

1. t(H,uH×) = sup{d(x,Z(a) ∩ uH×Z(H)) | a ∈ uH, x ∈ Z(a), Aa(MH) 6= ∅}.
2. t(H) = sup{d(x,Z(a) ∩ uH×Z(H)) | a ∈ uH, x ∈ Z(a), Aa(MH) 6= ∅, u ∈ A(H)}.

Proof. Without loss of generality, we assume that H is reduced: i.e., Hred = H.

1. Let t = t(H,u) and d = sup{d(x,Z(a) ∩ uZ(H)) | a ∈ uH, x ∈ Z(a), Aa(MH) 6= ∅}. We first
prove that t ≤ d. Assume a ∈ uH. Now we must show that, for all z ∈ Z(a), there exists
z′ ∈ Z(a) ∩ uZ(H) such that d(z, z′) ≤ d. Let z ∈ Z(a). If u | z, then we are done by setting
z′ = z, since then d(z, z′) = 0 ≤ d. Now assume that u - z. As a ∈ uH, we have u−1a ∈ H,
and therefore there is some z ∈ Z(u−1a). Then uz ∈ Z(a) and u | uz. Since (z, uz) ∈ MH ,
there exist n ∈ N and (x1, y1), . . . , (xn, yn) ∈ A(MH) such that (z, uz) = (x1, y1) · . . . · (xn, yn).
This implies that (xi, yi) | (z, uz) in MH for all i ∈ [1, n] and that there exists some j ∈ [1, n]
such that u | yj . Observe that xj | z implies that u - xj . Then (xj , yj) ∈ AπH(xj)(MH),
πH(xj) = πH(yj) ∈ uH, and yj ∈ Z(πH(xj)) ∩ uZ(H). Now take y′ ∈ Z(πH(xj)) ∩ uZ(H) such

that d(xj , y
′) = d(xj ,Z(πH(xj)) ∩ uZ(H)). If we now choose z′ = y′zx−1j , then u | z′, z′ ∈ Z(a),

and d(z, z′) = d(xj(zx
−1
j ), y′zx−1j ) = d(xj , y

′) ≤ q. This proves t ≤ d.

To prove t ≥ d, let z ∈ Z(H) with u | πH(z) be such that d = d(z,Z(πH(z)) ∩ uZ(H)), and
let y ∈ Z(πH(z)) ∩ uZ(H) be such that d = d(z, y). Then as t is the tame degree of H, there
must be an element x ∈ Z(πH(z)) with u | x and d(z, x) ≤ t by definition. Now d = d(z, y) =
d(z,Z(πH(z)) ∩ uZ(H)) ≤ d(z, x) ≤ t follows.

2. Obvious by part 1 and the very definition of the tame degree. �

Let H be an atomic monoid. Suppose we have a decomposition A(Hred) =
⊎
i∈I Ai, where I is an

index set and Ai ⊂ A(Hred) for i ∈ I are non-empty subsets such that

(1) A(MH) ∩ (F(Ai)×F(Ai)) = {(a, a) | a ∈ Ai} for all i ∈ I.
Let a, b ∈ A(Hred) and define an equivalence relation ' on A(Hred) by a ' b if a, b ∈ Ai for some
i ∈ I. We can extend the canonical projection π' : A(Hred) → A(Hred)/ ' to a monoid epimorphism
π' : Hred → H := [[ai]' | i ∈ I] (well defined by (1)) onto a reduced, atomic monoid, where ai ∈ Ai for
all i ∈ I. Of course, the possibly most interessting special case is, when I is finite, that is, H is a finitely
generated, reduced, atomic monoid.
Now we can prove the following result.

Theorem 20. Let H and H be as above. Then

c(H) ≤ c(H),

and, if additionally π' induces a homomorphism from MH onto MH , then

1. c(H) ≤ max{|x| | (x, y) ∈ A(MH)};
in particular, if c(H) = max{|x| | (x, y) ∈ A(MH)}, then c(H) = c(H);

2. ρ(H) = ρ(H) = max
{
|x|
|y|

∣∣∣ (x, y) ∈ A(MH)
}

; and

3. t(H) ≤ t(H).

Proof. Since π' is defined as a map from A(Hred) onto A(H), it trivially extends to π' : Z(H)→ Z(H)
such that the following diagram commutes:

Z(H)

πH

��

π' // Z(H)

πH

��
Hred

π' // H
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Now we prove the following two statements.

A1 For all z, z′ ∈ Z(H), z ≈ z′ implies π'(z) ≈ π'(z′).
A2 For all z ∈ Z(H), |z| = |π'(z)|.

Proof of A1. Let z, z′ ∈ Z(H) be such that gcd(z, z′) 6= 1. Then 1 6= π'(gcd(z, z′)) | gcd(π'(z), π'(z′)),
and therefore gcd(π'(z), π'(z′)) 6= 1. The assertion is now obvious. �

Proof of A2. It is obvious that |z| = |π'(z)| for all z ∈ Z(H). �

By A1, we find µ(H) ≥ µ(H), and thus, by Corollary 9, we have c(H) = µ(H) ≤ µ(H) = c(H). Now we
assume that π' induces a homomorphism from MH onto MH .

1. By A2, we find max{|x| | (x, y) ∈ A(MH)} = max{|x| | (x, y) ∈ A(MH)} whence Proposition 14
implies that c(H) ≤ max{|x| | (x, y) ∈ A(MH)} = max{|x| | (x, y) ∈ A(MH)}.

2. Since H is finitely generated, MH is also finitely generated. Thus we have, by A2,

sup

{
|x|
|y|

∣∣∣∣ (x, y) ∈ A(MH)

}
= sup

{
|x|
|y|

∣∣∣∣ (x, y) ∈ A(MH)

}
= max

{
|x|
|y|

∣∣∣∣ (x, y) ∈ A(MH)

}
.

Now everything follows by Proposition 14.2.
3. Obviously, we have d(z, z′) ≥ d(π'(z), π'(z′)) for all z, z′ ∈ Z(H). Thus we find t(H) ≥ t(H) by

Definition 3. �
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