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Abstract. The investigation and classification of non-unique factorization phenomena has attracted
some interest in recent literature. For finitely generated monoids, S.T. Chapman and P.A. Garćıa-Sánchez,
together with several co-authors, derived a method to calculate the catenary and tame degree from
the monoid of relations. Then, in [24], the algebraic structure of this approach was investigated and
the restriction to finitely generated monoids was removed. We now extend these ideas further to the
monotone catenary degree and then apply all these results to the explicit computation of arithmetical
invariants of semigroup rings.

1. Introduction

An integral domain and, more generally, a commutative, cancellative monoid is called atomic if every
non-zero non-unit has a factorization into irreducible elements, and it is called factorial if this factorization
is unique up to ordering and associates. Non-unique factorization theory is concerned with the description
and classification of non-unique factorization phenomena arising in atomic domains. It has its origin in
algebraic number theory—the ring of integers of an algebraic number field being atomic but generally not
factorial—but in the last decades it became an autonomous theory with many connections to zero-sum
theory, commutative ring theory, module theory, additive combinatorics, and representations of monoids.
We refer to the monograph [14] for a recent presentation of the various aspects of the theory.

To describe these phenomena, various invariants have been studied in the literature. Among these,
the tame degree, the catenary degree, and—a variant thereof—the monotone catenary degree received
some attention in recent research; for some new results, see, e.g. [3], [12], and [13]; for an overview of
known results and additional references, see, e.g., the monograph [14]; for a statement of the formal
definitions, see Section 2 and the beginning of Section 4. Additionally, monotone and near monotone
chains of factorizations have been studied in [10], [11], and [12, Section 7].

For an integral domain, non-unique factorization phenomena only concern the multiplicative monoid of
that domain. Thus we will only derive the theory for commutative, cancellative monoids, and apply these
results again to domains afterwards.

The monoid of relations associated to a monoid and a certain invariant µ(·) have been used successfully
to study the catenary degree and other invariants. Investigations of this type started only fairly recently.
In [29], such investigations were carried out for finitely generated monoids using results from [4] and [5].
In [6] and [22], these results and expansions thereof were applied in the investigation of numerical monoids;
for a detailed exposition of numerical monoids and applications, see, e.g. the monograph [28]. In [24] the
algebraic structure of this method was studied: i.e., the invariant µ(·), its definition, and the monoid of
relations. By this more algebraic-structural approach, the results could be extended to not necessarily
finitely generated monoids.

In the present paper, we extend the tools from [24] to study the monotone catenary degree by submonoids
of the monoid of relations. In Section 5, we apply these results and many of the results from [24] to the
explicit computation of arithmetical invariants for various semigroup rings. Additionally, the arithmetic
of some some generalized power series rings is studied there.

Moreover, these abstract characterizations, and, in particular, Lemma 3.4 are used successfully for
investigations on the arithmetic of non-principal orders in algebraic number fields in [26].
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2. Preliminaries

In this note, our notation and terminology will be consistent with [14]. Let N denote the set of positive
integers and let N0 = N ] {0}. For integers n, m ∈ Z, we set [n,m] = {x ∈ Z | n ≤ x ≤ m}. By
convention, the supremum of the empty set is zero and we set 0

0 = 1. The term “monoid” always means
a commutative, cancellative semigroup with unit element. We will write all monoids multiplicatively.
For a monoid H, we denote by H× the set of invertible elements of H. We call H reduced if H× = {1}
and call Hred = H/H× the reduced monoid associated with H. Of course, Hred is always reduced. Note
that the arithmetic of H is determined by Hred and therefore we can restrict our attention to reduced
monoids whenever convenient. We denote by A(H) the set of atoms of H, by A(Hred) the set of atoms
of the associated reduced monoid Hred, by Z(H) = F(A(Hred)) the free (abelian) monoid with basis
A(Hred), and by πH : Z(H) → Hred the unique homomorphism such that πH |A(Hred) = id. We call
Z(H) the factorization monoid and πH the factorization homomorphism of H. For a ∈ H, we denote by
Z(a) = π−1

H (aH×) the set of factorizations of a and denote by L(a) = {|z| | z ∈ Z(a)} the set of lengths of
a, where | · | is the ordinary length function in the free monoid Z(H). In this terminology, a monoid H is
called half-factorial if |L(a)| = 1 for all a ∈ H \H×—this coincides with the classical definition of being
half-factorial, since then every two factorizations of an element have the same length—and factorial if
|Z(a)| = 1 for all a ∈ H \H×.

With all these notions at hand, for a ∈ H, we set

ρ(a) = sup L(a)
min L(a) and call ρ(H) = sup{ρ(a) | a ∈ H} the elasticity of H.

Note that H is half-factorial if and only if ρ(H) = 1.
For two factorizations z, z′ ∈ Z(H), we call

d(z, z′) = max
{∣∣∣∣ z

gcd(z, z′)

∣∣∣∣ , ∣∣∣∣ z′

gcd(z, z′)

∣∣∣∣} the distance between z and z′

and, for two subset X, Y ⊂ Z(H), we call

d(X,Y ) = min{d(x, y) | x ∈ X, y ∈ Y } the distance between X and Y.

If one of the sets is a singleton, say X = {x}, we write d({x}, Y ) = d(x, Y ).
Let a ∈ H. We call two lengths k, l ∈ L(a) with k < l adjacent if [k, l] ∩ L(a) = {k, l} and, for M ⊂ N, we
set ZM (a) = {x ∈ Z(a) | |x| ∈M}. If the set is a singleton, say M = {k}, then we write Z{k}(a) = Zk(a).

Definition 2.1. Let H be an atomic monoid and let a ∈ H.
1. Factorizations z0, . . . , zn ∈ Z(a) with n ∈ N and d(zi−1, zi) ≤ N for some N ∈ N and i ∈ [1, n] are

called
• an N -chain concatenating z0 and zn (in Z(H)).
• a monotone N -chain concatenating z0 and zn (in Z(H)) if |zi−1| ≤ |zi| for all i ∈ [1, n].
• an equal-length N -chain concatenating z0 and zn (in Z(H)) if |zi−1| = |zi| for all i ∈ [1, n].

2. The
• catenary degree c(a)
• monotone catenary degree cmon(a)
• equal catenary degree ceq(a)

denotes the smallest N ∈ N0 ∪ {∞} such that, for all z, z′ ∈ Z(a), there is
• an N -chain concatenating z and z′.
• a monotone N -chain concatenating z and z′.
• an equal-length N -chain concatenating z and z′.

Then we call
• c(H) = sup{c(a) | a ∈ H} the catenary degree of H.
• cmon(H) = sup{cmon(a) | a ∈ H} the monotone catenary degree of H.
• ceq(H) = sup{ceq(a) | a ∈ H} the equal-length catenary degree of H.

Note that sup{c(H), ceq(H)} ≤ cmon(H).
For the description and computation of the monotone catenary degree, we follow the same two step

procedure as in [3]. In order to formulate this precisely, we need to define another variant of the catenary
degree.

Definition 2.2. Let H be an atomic monoid. For a ∈ H, we define

cad(a) = sup{d(Zk(a),Zl(a)) | k, l ∈ L(a) are adjacent}
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as the adjacent catenary degree of a.
Also, cad(H) = sup{cad(a) | a ∈ H} is called the adjacent catenary degree of H.

By [3, (4.1)], we find
c(H) ≤ cmon(H) = sup{ceq(H), cad(H)}.

Here we follow the same strategy as in [24, Section 3] for the definition of the R-relation and the
µ-invariant.

Definition 2.3. Let H be an atomic monoid and let a ∈ H.
1. Factorizations z0, . . . , zn ∈ Z(a) with n ∈ N and gcd(zi−1, zi) 6= 1 for all i ∈ [1, n] are called

• an R-chain concatenating z0 and zn (in Z(H)).
• a monotone R-chain concatenating z0 and zn (in Z(H)) if |zi−1| ≤ |zi| for all i ∈ [1, n].
• an equal-length R-chain concatenating z0 and zn (in Z(H)) if |zi−1| = |zi| for all i ∈ [1, n].

2. Two elements z, z′ ∈ Z(H) are
• R-related
• Req-related

if there is an
• R-chain
• equal-length R-chain

concatenating z and z′. We then write z ≈ z′ respectively z ≈eq z
′.

Note that, with the above definitions, ≈ and ≈eq are congruences on Z(H)× Z(H).
Based on these definitions, we can now recall the definition of the µ-invariant (for reference see [24,

Section 3]) and give the definition of the µeq-invariant and the µad-invariant. Note that the definition of
the last one differs significantly from the other two since there is no appropriate equivalence relation we
can make use of.

Definition 2.4. Let H be an atomic monoid and let a ∈ H.
1. Let Ra denote the set of R-equivalence classes of Z(a) and, for ρ ∈ Ra, let |ρ| = min{|z| | z ∈ ρ}.

We set
µ(a) = sup{|ρ| | ρ ∈ Ra} ≤ sup L(a)

and define µ(H) = sup{µ(a) | a ∈ H}.
2. For k ∈ L(a), let Ra,k denote the set of Req-equivalence classes of Zk(a). We set

µeq(a) = sup{k ∈ L(a) | |Ra,k| > 1} ≤ sup L(a)

and define µeq(H) = sup{µeq(a) | a ∈ H}.
3. We set

µad(a) = sup{k ∈ L(a) | d(Zk(a),Zl(a)) = k for l ∈ L(a), l < k, l adjacent to k}.

Then we set µad(H) = sup{µad(a) | a ∈ H}.

Then µ(H) = 0 if and only if |Ra| ≤ 1 for all a ∈ H and µeq(H) = 0 if and only if |Ra,k| ≤ 1 for all
a ∈ H and k ∈ L(a).

Definition 2.5. Let H ⊂ D be monoids.
1. We call H ⊂ D saturated or, equivalently, a saturated submonoid if, for all a, b ∈ H, a | b in D

already implies that a | b in H; that is, for all a, b ∈ H and c ∈ D, a = bc implies c ∈ H.
2. If H ⊂ D is a saturated submonoid, then we set D/H = {aq(H) | a ∈ D} and [a]D/H = aq(H)

and we call q(D)/q(H) = q(D/H) the class group of H in D.

Definition 2.6. Let H be an atomic monoid. We call

∼H = {(x, y) ∈ Z(H)× Z(H) | π(x) = π(y)} the monoid of relations of H,
∼H,eq = {(x, y) ∈∼H | |x| = |y|} the monoid of equal-length relations of H,
∼H,mon = {(x, y) ∈∼H | |x| ≤ |y|} the monoid of monotone relations of H,

and, for a ∈ H, we set

Aa(∼H) = A(∼H) ∩ (Z(a)× Z(a)),
Aa(∼H,eq) = A(∼H,eq) ∩ (Z(a)× Z(a)),
Aa(∼H,mon) = A(∼H,mon) ∩ (Z(a)× Z(a)).
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By [24, Lemma 11], ∼H⊂ Z(H)× Z(H) is a saturated submonoid of a free monoid and thus a Krull
monoid by [14, Theorem 2.4.8.1]. By [3, Proposition 4.4.1], ∼H,eq⊂∼H is a saturated submonoid and
hence a Krull monoid, and, by [3, Proposition 4.4.2], ∼H,eq is finitely generated if Hred is finitely generated.
Unfortunately, ∼H,mon⊂∼H is not saturated, but, by Lemma 5.11, we find that ∼H,mon is a finitely
generated Krull monoid if H is finitely generated.

We briefly recall the main result on the catenary degree from [24] and offer a corrected proof for
monoids fulfilling the ascending chain condition on principal ideals here.

Lemma 2.7 (cf. [24, Proposition 8, Corollary 9, Proposition 16]). Let H be an atomic monoid which
fulfills the ascending chain condition on principal ideals. Then

1. c(H) ≥ µ(a) for all a ∈ H, and c(H) = µ(H).
2. c(H) = max{µ(a) | a ∈ H, Aa(∼H) 6= ∅, |Ra| > 1}.

Proof.
1. First we prove

c(a) ≥ µ(a) for all a ∈ H.
Let a ∈ H be such that |Ra| > 1. We may assume that c(a) < ∞. Let N ∈ N0 be such that
µ(a) ≥ N . Let ρ ∈ Ra be such that |ρ| ≥ N and z ∈ ρ such that |z| = |ρ|. Let z′ ∈ Z(a) be such
that z 6≈ z′ and let z = z0, z1, . . . , zk = z′ be a c(a)-chain concatenating z and z′. Let i ∈ [1, k] be
minimal such that z 6≈ zi. Then zi−1 6≈ zi, and therefore

N ≤ |z0| ≤ |zi−1| ≤ d(zi, zi−1) ≤ c(a).

Till now we have c(H) ≥ µ(H). Next we show

µ(H) ≥ c(H).

We show that, for all a ∈ H, we have c(a) ≤ µ(H). We proceed by induction on a. For a = 1,
this is trivial. Now suppose a 6= 1 and that, for all b ∈ H with b | a, we have c(b) ≤ µ(H).
Now let z, z′ ∈ Z(a). If z 6≈ z′, then there are z′′, z′′′ ∈ Z(a) such that z′′ ≈ z, z′′′ ≈ z′, and
z′′ and z′′′ are minimal in their R-classes with respect to their lengths. Since gcd(z′′, z′′′) = 1,
we find d(z′′, z′′′) = max{|z′′|, |z′′′|} ≤ µ(a) ≤ µ(H). Now it remains to show that, for any two
factorizations z, z′ ∈ Z(a) with z ≈ z′, there is a µ(H)-chain concatenating them. By definition,
there is an R-chain z0, . . . , zk with z = z0 and z′ = zk, and gi = gcd(zi−1, zi) 6= 1 for all i ∈ [1, k].
Since πH(g−1

i zi−1) | a, we find a µ(H)-chain concatenating g−1
i zi−1 and g−1

i zi for all i ∈ [1, k] by
induction hypothesis, and thus there is a µ(H)-chain concatenating zi−1 and zi for all i ∈ [1, k];
thus there is a µ(H)-chain concatenating z and z′. So c(a) ≤ µ(H).

2. When we compare the definitions, we see that the only thing remaining is

{a ∈ H | Aa(∼H) 6= ∅, |Ra| > 1} = {a ∈ H | |Ra| > 1}.

One inclusion is trivial and, for the other one, let a ∈ H be such that |Ra| > 1, and let z, z′ ∈ Z(a)
be two factorizations of a such that z 6≈ z′ and such that both are minimal in their R-equivalence
classes with respect to their lengths. Now assume (z, z′) /∈ A(∼H). Then there is k ≥ 2 and
(x1, y1), . . . , (xk, yk) ∈ A(∼H) such that (z, z′) = (x1, y1)·. . .·(xk, yk). But now we find the following
R-chain from z to z′: z0 = z and zi = zi−1x

−1
i yi for i ∈ [1, k]. Then zk = z′ and gcd(zi−1, zi) 6= 1.

Since this is a contradiction, we have (z, z′) ∈ A(∼H), and thus (z, z′) ∈ Aa(∼H) 6= ∅. �

3. A characterization of the monotone catenary degree by monoids of relations

Lemma 3.1. Let H be an atomic monoid, a ∈ H and x, y ∈ Z(a).
1. If x 6≈eq y, then (x, y) ∈ Aa(∼H,eq).
2. Let k, l ∈ L(a) be adjacent with k < l. If d(Zk(a),Zl(a)) = l, then (x, y) ∈ Aa(∼H,mon) for all
x ∈ Zk(a) and y ∈ Zl(a).

Proof. Since the arithmetic of H is determined solely by Hred, we may assume that H is reduced.
1. Let a ∈ H and x, y ∈ Z(a) be such that (x, y) /∈ Aa(∼H,eq). Then, trivially, (x, y) /∈ A(∼H,eq) and

thus there are (x1, y1), . . . , (xk, yk) ∈ A(∼H,eq) with k ≥ 2 such that (x, y) = (x1, y1) · . . . · (xk, yk).
Then x = x1 · . . . · xk, y1x2 · . . . · xk, y1 · . . . · yk = y is an Req-chain concatenating x and y, and
therefore x ≈eq y.
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2. Let a ∈ H, let k, l ∈ L(a) be adjacent with k < l and d(Zk(a), Zl(a)) = l, and let x ∈ Zk(a)
and y ∈ Zl(a). Now suppose (x, y) /∈ Aa(∼H,mon). Then, trivially, (x, y) /∈ A(∼H,mon) and there
are (x1, y1), . . . , (xk, yk) ∈ A(∼H,mon) with k ≥ 2 and |y1| − |x1| ≤ . . . ≤ |yk| − |xk|. Then we
set x′ = x−1

1 y1x. If |y1| − |x1| = 0, we find |x′| = k and gcd(x′, y) 6= 1, a contradiction to
d(Zk(a),Zl(a)) = l. Otherwise, if |y1| − |x1| > 0, then k = |x| < |x′| < |y| = l, a contradiction to k
and l being adjacent. �

In principal, we follow the same strategy as in [24, Section 3] for the µ-invariant when studying the
µeq-invariant. For the µad-invariant, we cannot construct an equivalence relation like the R-relation or the
Req-relation. Thus we follow a slightly modified strategy in the proofs of parts 3 and 4 from Theorem 3.2.

Theorem 3.2. Let H be an atomic monoid. Then
1. ceq(a) ≥ µeq(a) for all a ∈ H, and ceq(H) = µeq(H).
2. ceq(H) = sup{µeq(a) | a ∈ H, Aa(∼H,eq) 6= ∅, |Ra,k| > 1 for some k ∈ L(a)}

= sup{k ∈ N | a ∈ H, Aa(∼H,eq) 6= ∅, k ∈ L(a), |Ra,k| > 1}.
3. cad(a) ≥ µad(a) for all a ∈ H, and cad(H) = µad(H).
4. cad(H) = sup{µad(a) | a ∈ H, Aa(∼H,mon) 6= ∅}.

In particular,

cmon(H) = sup({µeq(a) | a ∈ H, Aa(∼H,eq), |Ra,k| > 1 for some k ∈ L(a)}
∪ {µad(a) | a ∈ H, Aa(∼H,mon)}).

Proof. Since the arithmetic of H is determined solely by Hred we may assume that H is reduced.
1. First we prove ceq(a) ≥ µeq(a) for all a ∈ H. We may assume that ceq(a) <∞ and µeq(a) ≥ 1. Let
N ∈ N be such that N ≤ µeq(a). Then there exists k ∈ L(a) such that |Ra,k| > 1 and k ≥ N . Let
z, z′ ∈ Zk(a) be such that z 6≈eq z

′, and let z = z0, z1, . . . , zn = z′ be a ceq(a)-equal-length chain
concatenating z and z′. Now we choose i ∈ [0, n− 1] minimal such that z 6≈eq zi. Then zi−1 6≈eq zi,
and we find

ceq(a) ≥ d(zi−1, zi) = k ≥ N.
Now we prove µeq(H) ≥ ceq(H). We show that, for all N ∈ N0, all a ∈ H, and all factorizations
z, z′ ∈ Z(a) with |z| = |z′| ≤ N , there is a µeq(H)-equal-length-chain from z to z′. We proceed
by induction on N . If N = 0, then z = z′ = 1 and d(z, z′) = 0 ≤ µeq(H). Suppose N ≥ 1
and that, for all a ∈ H and all z, z′ ∈ Z(a) with |z| = |z′| < N , there is a µeq(H)-equal-length-
chain from z to z′. Now let a ∈ H and let z, z′ ∈ Z(a) with |z| = |z′| ≤ N . If z 6≈eq z′,
then µeq(H) ≥ µeq(a) ≥ |z| = d(z, z′). Now it remains to show that, for any two factorizations
z, z′ ∈ Z(a) with |z| = |z′| ≤ N and z ≈eq z

′, there is a µeq(H)-equal-length-chain concatenating
them. By definition, there is an Req-chain z0, . . . , zk with z0 = z, z′ = zk, gi = gcd(zi−1, zi) 6= 1,
and |zi| = |z| for all i ∈ [1, k]. By induction hypothesis, there is a µeq(H)-equal-length-chain from
g−1
i zi−1 to g−1

i zi for all i ∈ [1, k], and hence there is a µeq(H)-equal-length-chain from zi−1 to zi
for i ∈ [1, k]; thus there is a µeq(H)-equal-length chain from z to z′.

2. By part 1, we have ceq(H) = µeq(H) and, by Definition 2.4.2, the third equality is obvious. Thus
it suffices to show that

{µeq(a) | a ∈ H, |Ra,k| > 1 for some k ∈ L(a)} =
{µeq(a) | a ∈ H, Aa(∼H,eq) 6= ∅, |Ra,k| > 1 for some k ∈ L(a)}.

The inclusion from right to left is clear. Now let a ∈ H and k ∈ L(a) be such that |Ra,k| > 1. Then
there exist z, z′ ∈ Zk(a) such that z 6≈eq z

′. By Lemma 3.1.1, we find (z, z′) ∈ Aa(∼H,eq) 6= ∅.
3. First let a ∈ H. We show that cad(a) ≥ µad(a), and then cad(H) ≥ µad(H) follows by passing to the

supremum on both sides. If µad(a) = 0 or µad(a) =∞, this is trivial. Now let µad(a) = l ∈ N. Then
there is k ∈ L(a) and k < l with l adjacent to k. Then, by Definition 2.2, cad(a) ≥ d(Zk(a),Zl(a)) =
max{k, l} = l = µad(a).
Now we prove µad(H) ≥ cad(H). We must prove that cad(a) ≤ µad(H) for all a ∈ H. Assume to
the contrary that there is some a ∈ H such that cad(a) > µad(H). Let l ∈ N be minimal such that
there is some k < l and a ∈ H with k and l adjacent lengths of a and cad(a) = d(Zk(a),Zl(a)). If
d(Zk(a),Zl(a)) < l, then there are some x ∈ Zk(a) and y ∈ Zl(a) such that g = gcd(x, y) 6= 1. If
b = πH(g−1x), then k − |g| and l − |g| are adjacent lengths of b and

cad(a) = d(Zk(a),Zl(a)) ≤ d(Zk−|g|(b),Zl−|g|(b)) ≤ cad(b),

and by the minimal choice of l, we infer that cad(b) ≤ µad(H), a contradiction.
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4. By part 3 and Definition 2.4.3, we find
cad(H) = µad(H) = sup{µad(a) | a ∈ H}.

Thus it suffices to show that
sup{µad(a) | a ∈ H} = sup{µad(a) | a ∈ H, Aa(∼H,mon)}.

In fact, we only have to show that sup{µad(a) | a ∈ H} ≤ sup{µad(a) | a ∈ H, Aa(∼H,mon)}.
Now let a ∈ H and µad(a) = k ∈ N. Then there is l ∈ L(a) with l < k, l adjacent to k, and
d(Zk(a),Zl(a)) = k. Now let x ∈ Zl(a) and y ∈ Zk(a). Then we have gcd(x, y) = 1. By Lemma 3.1.2,
we have (x, y) ∈ Aa(∼H,mon) 6= ∅.

The additional statement now follows easily by parts 2 and 4. �

Lemma 3.3. Let H be an atomic monoid and let a ∈ H.
1. Let x, y ∈ Z(a) with min{|x|, |y|} > cmon(a). Then there is a monotone R-chain concatenating x

and y, and thus x ≈ y; in particular, if |x| = |y|, then x ≈eq y.
2. Let k, l ∈ L(a). Then

d(Zk(a),Zl(a)) = max{k, l} if and only if gcd(x, y) = 1 for all x ∈ Zk(a) and y ∈ Zl(a).
3. Let k, l ∈ L(a) be adjacent with k < l such that there are x ∈ Zk(a) and y ∈ Zl(a) such that there

is a monotone R-chain concatenating x and y. Then µad(a) 6= 1.

Proof. Since the arithmetic of H is determined solely by Hred, we may assume that H is reduced.
1. Let a ∈ H and x, y ∈ Z(a) be such that min{|x|, |y|} > cmon(a). We may assume that |x| ≤ |y|.

Then there is a monotone cmon(a)-chain concatenating x and y, say z0 = x, z1, . . . , zk = y. Since,
for all i ∈ [1, k], we have d(zi−1, zi) ≤ cmon(a) < |x| = |z0|, we have gcd(zi−1, zi) 6= 1 for all
i ∈ [1, k]. Thus z0, . . . , zk is a monotone R-chain concatenating x and y, and therefore x ≈ y. If
|x| = |y|, then z0, . . . , zk is an equal-length chain, and therefore x ≈eq y.

2. Follows immediately by the definition of the distance of factorizations in Z(H).
3. Let a ∈ H, let k, l ∈ L(a) be adjacent with k < l, let x ∈ Zk(a), and y ∈ Zl(a) be such that

there is a monotone R-chain from x to y, say z0 = x, z1, . . . , zn = y for some n ∈ N. Now choose
i ∈ [1, n] minimal such that |zi| = l. Due to the minimality of i, we find zi−1 ∈ Zk(a). Since
gcd(zi−1, zi) 6= 1, we find d(Zk(a),Zl(a)) < l, and therefore µad(a) 6= l. �

Lemma 3.4. Let H be an atomic monoid. Then
1. ceq(H) ≤ sup{|y| | (x, y) ∈ A(∼H,eq), x 6≈eq y}.
2. cad(H) ≤ sup{|y| | (x, y) ∈ A(∼H,mon), |x| < |y|, |x|, |y| ∈ L(πH(x)) adjacent, and there is no

monotone R-chain from x to y}.
In particular,

cmon(H) ≤ sup{|y| | (x, y) ∈ A(∼H,mon), there is no monotone R-chain from x to y,
and either |x| = |y| or |x|, |y| ∈ L(πH(x)) are adjacent}.

Proof. Since the arithmetic of H is determined solely by Hred, we may assume that H is reduced.
1. The inequality ceq(H) ≤ sup{|y| | (x, y) ∈ A(∼H,eq) has been proven in [3, Proposition 4.4.3]. The

slightly stronger statement here follows immediately by the definition of µeq(·); see Definition 2.4.2.
2. By Theorem 3.2.4, we have cad(H) = sup{µad(a) | a ∈ H, Aa(∼H,mon) 6= ∅}. Now the assertion

follows from Lemma 3.3.3, Lemma 3.1.2, and the definition of µad(·); see Definition 2.4.3.
The additional statement follows from

cmon(H) = sup{ceq(H), cad(H)} and A(∼H,eq) ⊂ A(∼H,mon). �

4. Tameness and monotone chains

Definition 4.1. Let H be an atomic monoid.
1. For a ∈ H and x ∈ Z(H), let t(a, x) denote the smallest N ∈ N0 ∪{∞} with the following property:

If Z(a) ∩ xZ(H) 6= ∅ and z ∈ Z(a), then there exists some z′ ∈ Z(a) ∩ xZ(H) such that
d(z, z′) ≤ N .

For subsets H ′ ⊂ H and X ⊂ Z(H), we define
t(H ′, X) = sup{t(a, x) | a ∈ H ′, x ∈ X},

and we define t(H) = t(H,A(Hred)). This is called the tame degree of H.
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2. If t(H) <∞, then we call H tame.

Being tame is a very strong finiteness condition within non-unique factorization theory, in particular,
the finiteness of the tame degree implies the finiteness of the elasticity and the catenary degree among
other invariants. Next, we give a list of examples where tameness is characterized in various classes of
monoids and domains; for a similar list, the reader is referred to [16, Examples 3.2].

1. Finitely generated monoids. If Hred is finitely generated, then H is tame (see [14, Theorem 3.1.4]).
2. Finitely primary monoids. Let H be finitely primary of rank s ∈ N. Then H is tame if and only if
s = 1 (see [14, Theorem 3.1.5]).

3. Weakly Krull domains. Let R be a v-noetherian weakly Krull domain with nonzero conductor
f = (R : R̂) and finite v-class group Cv(R). Note that, in particular, orders in algebraic number
fields fulfill all these properties.
Then R is tame if and only if, for every nonzero prime ideal p ∈ X(R) with p ⊃ f, there is precisely
one P ∈ X(R̂) such that P ∩R = p (see [14, Theorem 3.7.1]).

4. Krull monoids and therefore Krull domains. Let H be a Krull monoid, F = F(P ) a monoid
of divisors and GP = {[p] | p ∈ P} ⊂ F/Hred = G the set of classes containing prime divisors.
Suppose that one of the following conditions hold:
(a) H has the approximation property.
(b) Every g ∈ GP contains at least two prime divisors.
(c) There is an m ∈ N such that −Gp ⊂ m(GP ∪ {0}).
(d) The torsion free rank of G is finite.

Then H is tame if and only if D(GP ) < ∞ (see [16, Theorem 4.2]). In particular, all principal
orders in algebraic number fields are tame.

5. C-like monoids. Let H be a C-like monoid. Then H is tame if and only if the natural map
s-spec(Ĥ) → s-spec(H) is bijective (see [19, Theorem 8.3] and [19, Definition 5.6] for a precise
definition of C-like monoids).
Next we give two examples of C-like monoids. R• is a C-like monoid if
• (see [19, Proposition 6.1]) R is an integral domain and R• is finitely primary.
• (see [19, Proposition 6.5]) R is a Mori domain with complete integral closure R̂, Cv(R̂) is finite,

(R : R̂) 6= 0, and either
– R is semilocal, and R̂/(R : R̂) is quasi artinian or
– Cv(R) is finite and S−1R̂/S−1(R : R̂) is quasi artinian, where S ⊂ R• is the submonoid

of regular elements.
While the tameness of a monoid implies the finiteness of the catenary degree, it does not imply the

finiteness of the equal catenary degree and therefore not the finiteness of the monotone catenary degree.
In order to point this out, we discuss a monoid originally introduced in [9, Example 4.5].

Recall that a monoid H is called finitely primary if there exist s, k ∈ N and a factorial monoid
F = [p1, . . . , ps]× F× with the following properties:
• H \H× ⊂ p1 · . . . · psF and
• (p1 · . . . · ps)kF ⊂ H.

If this is the case, then we call H a finitely primary monoid of rank s and exponent k.

Example 4.2 (cf. [9, Example 4.5]). There exists a tame monoid H such that ceq(H) =∞, and thus
cmon(H) =∞ but cad(H) <∞.

Proof. We proceed in four steps.
1. We start with a construction which was first used in [18]. Let G be an additively written abelian

group and f : G→ N0 a map with f(0) = 0 and finite image f(G) such that, for all g, g′ ∈ G, the
following two conditions are satisfied:
(a) f(g + g′) ≤ f(g) + f(g′) and
(b) if f(g) = 0, then f(−g) = 0.

Then, by construction,

H(G, f) = {(g, k) | g ∈ G, k ∈ N0 with k ≥ f(g)} ⊂ (G× N0,+)

is a finitely primary monoid of rank one and exponent max f(G).
2. We consider a group G with basis E = {em, e′m | m ∈ N}, where ord(em) = ord(e′m) = m for all
m ∈ N, whence

G =
⊕
m∈N

(〈em〉 ⊕ 〈e′m〉) =
⊕
m∈N

(Z/mZ)2.
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Let f : G→ N0 be defined by f(0) = 0, f(e) = 1 for all e ∈ E, and f(g) = 2 for all g ∈ G\(E∪{0}).
Then f satisfies all properties required in part 1, and we study H(G, f) = H.

3. Let n ∈ N and an = (0, n) ∈ H. Then zn = (en, 1) + . . . + (en, 1) ∈ Zn(an), z′n = (e′n, 1) + . . . +
(e′n, 1) ∈ Zn(an), and we assert that, for every z ∈ Zn(an) \ {zn}, we have d(zn, z) = n. Then we
find

cmon(H) ≥ ceq(H) ≥ ceq(an) ≥ n,
whence cmon(H) = ceq(H) =∞. Let z ∈ Zn(an)\{zn}. Then z has the form z = (g1, 1)+. . .+(gn, 1)
with g1, . . . , gn ∈ G. Since 1 ≥ f(gi) for every i ∈ [1, n], it follows that {g1, . . . , gn} ⊂ E ∪ {0}.
If en ∈ {g1, . . . , gn}, then g1 = . . . = gn = en, because E is a basis. Since z 6= zn, we infer that
en /∈ {g1, . . . , gn}, whence d(zn, z) = n.

4. Let (g, n) ∈ H(G, f). First we prove that either max L((g, n)) = n−1 or d(Zn−1((g, n)),Zn((g, n))) =
3. If max L((g, n)) = n−1, then the assertion is trivial. Thus assume max L((g, n)) = n. Then there
is z ∈ Zn((g, n)) of the form z = (en1 , 1)+. . .+(enn

, 1) with en1 , . . . , enn
∈ E and en1 +. . .+enn

= g.
Now we find z′ = (en1 + en2 + e2, 2) + (e2, 1) + (en3 , 1) + . . . + (enn

, 1) ∈ Zn−1((g, n)) and
d(Zn−1((g, n)),Zn((g, n))) ≤ d(z, z′) = 3. This proves the assertion in the second case.

If n ≤ 6, then max L((g, n)) ≤ 6, and thus cad((g, n)) ≤ 6. Let now n ≥ 7. Then there are
n′ ∈ [3, 6] and n′′ ∈ N such that n = n′ + 4n′′ and (g, n) = (g, n′) + n′′(0, 4). Since we have
z1 = 4(e4, 1), z2 = (e2, 1) + (e4, 1) + (e2 + 3e4, 2), z3 = 2(e2 + 2e4, 2) ∈ Z((0, 4)), |z1| = 4, |z2| =
3, |z3| = 2, and d(z1, z2) = d(z2, z3) = 3, we find that cad((g, n)) ≤ max{3, n′} = n′ ≤ 6 <∞.

5. By [14, Theorem 3.1.5.2.a], each finitely primary monoid of rank one is tame. �

Note that, for the monoid H in Example 4.2, we have cad(H) < ∞, and therefore the question of
whether the finiteness of the tame degree implies the finiteness of the adjacent catenary degree remains
open. Nevertheless, the following result from [16] might be interpreted as a strong sign that the tame
degree can dominate the adjacent catenary degree.
Lemma 4.3 (cf. [16, Theorem 5.1.b]). Let H be a tame monoid. Then there exists a constant M ∈ N0
such that, for all a ∈ H and for each two adjacent lengths k, l ∈ L(a) ∩ [min L(a) +M,max L(a)−M ], we
have d(Zk(a),Zl(a)) ≤M .
Lemma 4.4. Let H be an atomic monoid.

1. If H is half-factorial, then cad(H) = 0 and cmon(H) = ceq(H) = c(H).
2. If a ∈ H satisfies |L(a)| ≤ 2, then µad(a) ≤ t(H).

Proof. Since the arithmetic of H is determined solely by Hred, we may assume that H is reduced.
1. Since, for all a ∈ H with |L(a)| = 1, we have no adjacent lengths, it follows that cad(H) = 0,

and thus cmon(H) = ceq(H). As—in this special situation—every chain of factorizations is an
equal-length chain of factorizations, we get ceq(H) = c(H).

2. Choose a ∈ H such that |L(a)| ≤ 2. If |L(a)| = 1, then µad(a) = 0. Now suppose |L(a)| = 2. If
µad(a) = 0, then there is nothing to show. Now suppose µad(a) > 0. Then µad(a) = max L(a), and
thus gcd(x, y) = 1 for all x, y ∈ Z(a) with |x| = min L(a) and |y| = max L(a). Let x, y ∈ Z(a) with
|x| = min L(a) and |y| = max L(a) and choose u ∈ A(H) such that x ∈ Z(a) ∩ uH×Z(H). Then
there is no y′ ∈ Z(a) ∩ uH×Z(H) with |y′| = |y|. Now we find

t(H) ≥ t(a, uH×) ≥ d(y,Z(a) ∩ uH×Z(H)) = |y| = max L(a) = µad(a). �

Next we formulate another variant of the catenary degree, which is somewhat similar to the adjacent
catenary degree and equals it in a special situation. The main difference is that we can prove that the
m-adjacent catenary degree is finite for tame monoids when m is sufficiently large.
Definition 4.5. Let H be an atomic monoid, let a ∈ H and let m ∈ N.

1. We set
µad,m(a) = sup{k ∈ L(a) | d(Zk(a),Z[k−m,k)(a)) = k} and µad,m(H) = sup{µad,m(a) | a ∈ H}.
2. We define

cad,m(a) = sup{d(Zk(a),Z[k−m,k)(a)) | k ∈ L(a)}
as the m-adjacent catenary degree of a.
Also, cad,m(H) = sup{cad,m(a) | a ∈ H} is called the m-adjacent catenary degree of H.

Obviously, we find

cad,m(H)


= 0 m < min4(H)
≤ cad(H)
= cad(H) 4(H) = {n} and n ≤ m < 2n.
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Since the definitions of the m-adjacent catenary degree and µad,m(H) are similar to those of the
adjacent catenary degree and µad(H), we can now prove the analog of Theorem 3.2.3 for the two newly
defined invariants.

Theorem 4.6. Let H be an atomic monoid and let m ∈ N. Then
1. cad,m(a) ≥ µad,m(a) for all a ∈ H, and cad,m(H) = µad,m(H).
2. cad,m(H) ≤ t(H) for all m ≥ t(H).

Proof.
1. For m < min4(H), we have cad,m(H) = 0 = µad,m(H) by definition. Now let m ∈ N and
m ≥ min4(H).
First we let a ∈ H and show that cad,m(a) ≥ µad,m(a), after which cad,m(H) ≥ µad,m(H) follows
by passing to the supremum on both sides. If µad,m(a) = 0 or µad,m(a) = ∞, this is trivial.
Now let µad,m(a) = k ∈ N and [k − m, k) ∩ L(a) = {l1, . . . , ln}. Then, by Definition 4.5.2,
cad,m(a) ≥ d(Zk(a),Z[k−m,k)(a)) = k = µad,m(a).
Now we prove µad,m(H) ≥ cad,m(H). We must prove that cad,m(a) ≤ µad,m(H) for all a ∈ H.
Assume to the contrary that there is some a ∈ H such that cad,m(a) > µad,m(H). Let k ∈ N be
minimal such that there is a ∈ H with cad,m(a) = d(Zk(a),Z[k−m,k)(a)). If d(Zk(a),Z[k−m,k)(a)) <
k, then there are some x ∈ Zk(a) and y ∈ Z[k−m,k)(a) such that g = gcd(x, y) 6= 1. If b = πH(g−1x),
then k − |g|, |y| − |g| ∈ L(b) ∩ [k − |g| −m, k − |g|] and

cad,m(a) = d(Zk(a),Z[k−m,k)(a)) ≤ d(Zk−|g|(b),Z[k−|g|−m,k−|g|)(b)) ≤ cad,m(b),

and, by the minimal choice of k, we infer that cad,m(b) ≤ µad,m(H), a contradiction.
2. If H is not tame, then there is no m ∈ N with m ≥ t(H). Thus we may assume that t(H) <∞.

Let m ≥ t(H). By part 1, it suffices to show that µad,m(a) ≤ t(H) for all a ∈ H. Let a ∈ H.
If µad,m(a) = 0, then there is nothing to show. Now suppose µad,m(a) = k > 0. Then we have
L(a) ∩ [k −m, k) = {l1, . . . , ln} and d(Zk(a),Zli(a)) = k for all i ∈ [1, n]. Then gcd(x, y) = 1 for
all x ∈ Zk(a) and y ∈ Zl1(a). Now let x ∈ Zk(a), y ∈ Zl1(a), and choose u ∈ A(H) such that
y ∈ Z(a) ∩ uH×Z(H). We find

(4.1) t(H) ≥ t(a, uH×) ≥ d(x,Z(a) ∩ uH×Z(H))
= min{d(x,Zl(a) ∩ uH×Z(H)) | l ∈ L(a), l 6= k} ≥ min{k,m+ 1} = k = µad,m(a),

since m+ 1 > t(H). �

Another interesting observation arising from the proof of Theorem 4.6.2 is the fact that the crucial
inequality (4.1) might fail for m < t(H) for some a ∈ H (of course, with µad,m(a) > 0). Additionally,
Theorem 4.6.2 can never be used to bound cad(H), since cad(H) = cad,m(H) for m = min4(H) if
|4(H)| = 1, but then t(H) ≥ m+ 2 > m, and therefore Theorem 4.6.2 does not hold for cad(H).

5. Applications to semigroup rings and generalized power series rings

The arithmetic of such domains has attracted a lot of interest; for an overview, we refer to [1] and [2];
and for some recent results, we refer to [20] and [21]. Nevertheless, there are nearly no precise results
on their arithmetic. In order to apply our monoid theoretic tools from Section 3 and [24] to the explicit
computation of various arithmetical invariants of semigroup rings and generalized power series rings, we
follow a 2-step strategy. In the first step, we apply transfer principles as described in much detail in [14,
Section 3.2], and in the second step, we make use of the monoid theoretic tools.

Definition 5.1. A monoid homomorphism θ : H → B is called a transfer homomorphism if it has the
following properties:

T1 B = θ(H)B× and θ−1(B×) = H×.
T2 If a ∈ H, r, s ∈ B and θ(a) = rs, then there exist b, c ∈ H such that θ(b) ∼ r, θ(c) ∼ s, and a = bc.

Definition 5.2. Let θ : H → B be a transfer homomorphism of atomic monoids and θ̄ : Z(H)→ Z(B)
the unique homomorphism satisfying θ̄(uH×) = θ(u)B× for all u ∈ A(H). We call θ̄ the extension of θ to
the factorization monoids.
For a ∈ H, the catenary degree in the fibers c(a, θ) denotes the smallest N ∈ N0 ∪ {∞} with the following
property:



10 ANDREAS PHILIPP

For any two factorizations z, z′ ∈ Z(a) with θ̄(z) = θ̄(z′), there exists a finite sequence of
factorizations (z0, z1, . . . , zk) in Z(a) such that z0 = z, zk = z′, θ̄(zi) = θ̄(z), and d(zi−1, zi) ≤ N
for all i ∈ [1, k]; that is, z and z′ can be concatenated by an N -chain in the fiber Z(a)∩ θ̄−1((θ̄(z))).

Also, c(H, θ) = sup{c(a, θ) | a ∈ H} is called the catenary degree in the fibers of H.
We briefly fix the notation concerning sequences over finite abelian groups. Let G be an additively

written, finite abelian group. For a subset A ⊂ G and an element g ∈ G, we set −A = {−a | a ∈ A} and
A− g = {a− g | a ∈ A}. Let F(G) be the free abelian monoid with basis G. The elements of F(G) are
called sequences over G. If a sequence S ∈ F(G) is written in the form S = g1 · . . . · gl, we tacitly assume
that l ∈ N0 and g1, . . . , gl ∈ G. For a sequence S = g1 · . . . · gl, we call

|S| = l the length of S,
σ(S) =

∑l
i=1 gi ∈ G the sum of S,

supp(S) = {g1, . . . , gl} ⊂ G the support of S,
Σ(S) = {

∑
i∈I gi | ∅ 6= I ⊂ [1, l]} ⊂ G the set of subsums of S, and

−Σ(S) = {
∑
i∈I(−gi) | ∅ 6= I ⊂ [1, l]} = {−g | g ∈ Σ(S)} ⊂ G the set of negative subsums of S.

The sequence S is called
• a zero-sum sequence if σ(S) = 0,
• zero-sum free if there is no non-trivial zero-sum subsequence, i.e. 0 /∈ Σ(S), and
• a minimal zero-sum sequence if S is nontrivial, σ(S) = 0, and every subsequence S′ | S with

1 ≤ |S′| < |S| is zero-sum free.
For a subset G0 ⊂ G, we set

B(G0) = {S ∈ F(G0) | σ(S) = 0} for the block monoid over G0 and
A(G0) = {S ∈ F(G0) | S minimal zero-sum sequence } ⊂ B(G0).

Then, in fact, B(G0) is an atomic monoid and A(G0) = A(B(G0)) is its set of atoms.
The Davenport constant D(G0) ∈ N is defined to be the supremum of all lengths of sequences in A(G0).
Definition 5.3. Let G be an additive abelian group, G0 ⊂ G a subset, T a monoid, ι : T → G a
homomorphism, and σ : F(G0)→ G the unique homomorphism such that σ(g) = g for all g ∈ G0. Then
we call

B(G0, T, ι) = {St ∈ F(G0)× T | σ(S) + ι(t) = 0}
the T -block monoid over G0 defined by ι.
If T = {1}, then B(G0, T, ι) = B(G0) is the block monoid of all zero-sum sequences over G0 and if
G0 = {0} then B(G0, T, ι) = [0]× T . Since 0 ∈ B(G0, T, ι) is prime, the arithmetic of T and B(G0, T, ι)
coincide in this situation.
Lemma 5.4. Let D be an atomic monoid, P ⊂ D a set of prime elements, and T ⊂ D an atomic
submonoid such that D = F(P )× T . Let H ⊂ D be a saturated atomic submonoid, let G = q(D/H) be
its class group, let ι : T → G be a homomorphism defined by ι(t) = [t]D/H , and suppose each class in G
contains some prime element from P .

1. The map β : H → B(G,T, ι), given by β(pt) = [p]D/H + ι(t) = [p]D/H + [t]D/H , is a transfer
homomorphism onto the T -block monoid over G defined by ι and c(H,β) ≤ 2

2. The following inequalities hold:
c(B(G,T, ι)) ≤ c(H) ≤ max{c(B(G,T, ι)), c(H,β)},

cmon(B(G,T, ι)) ≤ cmon(H) ≤ max{cmon(B(G,T, ι)), c(H,β)}, and
t(B(G,T, ι)) ≤ t(H) ≤ t(B(G,T, ι)) + D(G) + 1.

In particular, the equality c(H) = c(B(G,T, ι)) holds if c(B(G,T, ι)) ≥ 2, and the equality cmon(H) =
cmon(B(G,T, ι)) holds if cmon(B(G,T, ι)) ≥ 2.

3. L(H) = L(B(G,T, ι)), 4(H) = 4(B(G,T, ι)), min4(H) = min4(B(G,T, ι)), and ρ(H) =
ρ(B(G, t, ι)).

4. We set B = {S ∈ B(G,T, ι) | 0 - S}. Then B and B(G,T, ι) have the same arithmetical properties,
and

c(B) ≤ c(H) ≤ max{c(B), c(H,β)},
cmon(B) ≤ cmon(H) ≤ max{cmon(B), c(H,β)}, and

t(B) ≤ t(H) ≤ t(B) + D(G) + 1.
In particular, the equality c(H) = c(B) holds if c(B) ≥ 2, and the equality cmon(H) = cmon(B) holds
if cmon(B) ≥ 2.
Additionally, L(H) = L(B), 4(H) = 4(B), min4(H) = min4(B), and ρ(H) = ρ(B).
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Proof.
1. Follows by [14, Proposition 3.2.3.3 and Proposition 3.4.8.2].
2. The assertion on the catenary degree follows by [14, Theorem 3.2.5.5], the assertion on the monotone

catenary degree by [14, Lemma 3.2.6], and the assertion on the tame degree by [14, Theorem
3.2.5.1].

3. Follows by [14, Proposition 3.2.3.5].
4. Since 0 ∈ B(G,T, ι) is a prime element, it defines a partition B(G,T, ι) = [0]× B with B = {S ∈
B(G,T, ι) | 0 - S}. Thus all studied arithmetical invariants coincide for B and B(G,T, ι). Now the
assertions follow from part 2 and part 3. �

From now on, we write monoids additively. Then, for a reduced monoid H, H× = {0}.

Definition 5.5. Let K be a field and H a reduced atomic monoid. Then we call
• K[[H]] = K[[Xs | s ∈ A(H)]] the generalized power series ring
• K[H] = K[Xs | s ∈ A(H)] the semigroup ring

defined by H over K.

A submonoid H ⊂ N0 such that N0\H is finite is called a numerical monoid. Then we set G(H) = N0\H
for the set of gaps of H. Next we give a characterization of smooth numerical monoids.

While some abstract finiteness results on these rings can be obtained in a quite general setting, only
very little is known about the explicit behavior of the various invariants of non-unique factorization
theory. For special generalized power series rings, we repeat the following finiteness result from [15] in our
terminology.

Theorem 5.6 (cf. [15, Proposition 6.10 and Theorem 6.7]). Let K be a field and H ⊂ N0 a numerical
monoid. Then K[[H]] has finite catenary degree and finite elasticity.

In our further investigations, we will restrict ourselves generally to the most simple monoids possible,
i.e., to numerical monoids, since even there the situation is very complicated once one begins to calculate
everything in detail.

By [14, Theorem 3.7.1], the arithmetic of weakly Krull domains, e.g., a generalized power series ring
or a semigroup ring defined over a finite field, can mostly be described by studying appropriate T -block
monoids, i.e., B(G,T, ι) ⊂ F(G)×T . Special cases of the generalized power series rings and the semigroup
rings are studied in [14, Example 3.7.3, Special Case 3.2 and 3.3]. For special numerical monoids, i.e,
H = [e, . . . , 2e− 1] with e ≥ 2, and the generalized power series ring R = F [[H]] over a finite field F , there
a transfer homomorphism from R onto H is construced. In Lemma 5.8, we study for which monoids H, in
general, this homomorphism is indeed a transfer homomorphism. Surprisingly, it turns out that one can
characterize a special class of monoids, namely smooth monoids, this way.

Definition 5.7. Let (H,≤) be a reduced atomic monoid with a total order. Then we call H smooth if,
for all h, b, c ∈ H with h ≥ b+ c, we have h− b ∈ H.

Lemma 5.8. Let K be a field, (H,≤) a reduced atomic monoid with total order, and set

φ :
{

K[[H]]• → H
f =

∑
h∈H fhX

h 7→ min{h ∈ H | fh 6= 0} .

Then φ is a homomorphism, and φ is a transfer homomorphism if and only if H is smooth.

Proof. Obviously, φ is a homomorphism. First we assume that H is smooth. Now we must show the two
axioms from Definition 5.1. T1 is obvious, since φ is surjective. For T2, let u =

∑
h∈H uhX

h ∈ K[H] and
b, c ∈ H with φ(u) = b+ c. We set v = uφ(u)X

b and w = Xc +
∑
h∈H uhu

−1
φ(u)X

h−b. Then v, w ∈ K[[H]],
vw = u, and φ(w) = c.
Second, we assume that H is not smooth and show that axiom T2 of Definition 5.1 fails. Since H is not
smooth, there are h, b, c ∈ H with h > b+ c h− b, h− c /∈ H and all three elements are minimal with
this property. Then set u = Xb+c +Xh. Now φ(u) = b+ c. Let h′ ∈ {b, c} and set v = Xh′ . Then v - u
in K[[H]], and thus T2 does not hold. �

Proposition 5.9. Let H ⊂ N0 be a numerical monoid. Then the following are equivalent.
1. There is m ∈ N such that H = [m,m+ 1, . . . , 2m− 1].
2. G(H) is an interval.
3. H is smooth.
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Proof. Obviously, 1 and 2 are equivalent, and the implication from 1 to 3 is also clear.
3 ⇒ 1. If |A(H)| = 1, then, trivially, H = [1] = N0. Now let |A(H)| > 1 and k, n ∈ N be minimal such
that [k, k + n] ∩ A(H) = {k, k + n}. We proceed by distinguishing three cases.
Case 1. n > k. Then 2k < k + n, and therefore (k + n) − k = n ∈ H. This is a contradiction to
k + n ∈ A(H).
Case 2. n = k. Then k + n = 2k and this is again a contradiction to k + n ∈ A(H).
Case 3. n < k. By the minimality of k and n, we have that [k, k + n] ∩H = {k, k + n}. Let m ∈ N be
minimal such that mn ≥ k. If mn > k, then mn ∈ (k, kn), a contradiction; therefore mn = k, i.e., n | k.
Let x ∈ H \ [mn, (m+ 1)n, . . . (2m− 1)n] ∩ [0, 2mn). Additionally, x > (m+ a)n for some a ∈ N, since
x /∈ (mn, (m+ 1)n). Thus we find x ∈ ((m+ 1)n, 2mn) \ nN. Then there exist j ∈ [m+ 1, 2m− 1] and
l ∈ [1, n− 1] such that x = jn+ l. Let j′ ∈ [m− 1, 2m− 1] be such that j + j′ = im for i ≥ 2. Then we
find imn < imn+ l = x+ j′n ∈ H. Thus we find x+ j′m−mn = (i− 1)mn− l ∈ H. This can now be
repeated until we reach mn+ l ∈ H—a contradiction. Thus H = [mn, (m+ 1)n, . . . , (2m+ 1)n] and, since
H is a numerical monoid, we have gcd(A(H)) = 1, and therefore n = 1. Now the assertion follows. �

For the study of semigroup rings, the situation is even more difficult. Since there is then no transfer
homomorphism R = F [H] → H; see [14, Example 3.7.3, Special Case 3.3]. Thus—even after applying
the transfer principles in order to be in an easier situation—it is necessary to compute all the invariants
of non-unique factorization for more general T -block monoids, B(G,T, ι), where neither T nor G are
trivial. In the upcoming subsections, we exploit the results from [6], [5], [24, Proposition 16] (repeated as
Lemma 2.7), [24, Theorem 19.2], and Section 3 (mainly Theorem 3.2) together with recent programming
techniques (see [17] and [23, Section 8]) and parallelization to explicitly compute various arithmetical
invariants, namely, the elasticity, the catenary degree, the monotone catenary degree, and a bound for the
tame degree of the T -block monoids associated with the studied domains, and therefore for the domains
themselves.

5.1. Preliminaries about zero-sum sequences and T -block monoids.
In order to be able to describe the set of atoms of a T -block monoid precisely, we use the terminology of
sequences over finite abelian groups.

For our algorithmic considerations in the forthcoming sections, it will be very useful to have some
sort of order defined on the elements of a finite abelian group G. By the structure theorem for finitely
generated abelian groups, there are uniquely determined r ∈ N0 and n1, . . . , nr ∈ N such that there is a
group isomorphism ϕ : G→ Z/n1Z× . . .×Z/nrZ and 1 < n1 | . . . | nr. For i ∈ [1, r), we choose [0, ni) as
a system of representatives for Z/niZ. Now we can compare two elements g1, g2 ∈ G by comparing ϕ(g1)
and ϕ(g2) with respect to the lexicographic order. For short, we simply write g1 ≤ g2 respectively g1 ≥ g2.

In particular, in Subsection 5.4, we will need some kind of coordinate representation for the elements
of a T -block monoid, i.e., a monoid isomorphism mapping a T -block monoid onto a submonoid of
Zm × Z/n1Z × . . . × Z/nrZ for some m, r ∈ N0 and n1, . . . , nr ∈ N. Let G be a finite abelian group,
T a finitely generated monoid, and ι : T → G a homomorphism. Let T = D1 × . . . ×Dr be a product
of finitely primary monoids Di ⊂ [p(i)

1 , . . . , p
(i)
ri ] × D̂i

×
= D̂i where ri ∈ N, and the D̂i

×
are finitely

generated abelian groups for i ∈ [1, r]. Then there are uniquely determined li, ki ∈ N0 such that there
is an isomorphism φi : D̂i

×
→ Zli × Z/n(i)

1 Z × . . . × Z/n(i)
ki

with 1 < n
(i)
1 | . . . | n

(i)
ki

for i ∈ [1, r]. This
isomorphism can be extended to an isomorphism φ̄i : D̂i → Nri

0 × φi(D̂i

×
) for i ∈ [1, r]. Now there

is an isomorphism φ = φ̄1 × . . . × φ̄r : T̂ → φ̄1(D̂1) × . . . × φ̄r(D̂r). This again can be extended to an
isomorphism ϕ̄ : F(G)× T̂ → N

|G|
0 × φ(T̂ ). Now we can define the desired isomorphism by restriction of

ϕ̄ to the T -block monoid B(G,T, ι) as follows:

(5.1) ϕ = ϕ̄|B(G,T, ι) : B(G,T, ι)→ ϕ̄(B(G,T, ι)) ⊂ N|G|0 ×
r∏
i=1

Nri
0 × Zli ×

ki∏
j=1

Z/n(i)
j Z

 .

5.2. The set of atoms A(G) of a block monoid.
Based on ideas from [17], we give an algorithm for the computation of the set of atoms A(G) for a finite
additive abelian group G. The problem of computing A(G) grows exponentially in terms of |G|, but, for
very small groups as the ones involved in Subsection 5.5, it can be easily performed—sometimes even
by hand. Unfortunately, we have to do some sort of brute force search in the set of all S ∈ F(G) with
|S| ≤ D(G). But with the algorithm presented below, we can avoid most of the redundant checks and
therefore speed up the computation dramatically.

Since modular arithmetic on vectors with multiple coordinates is quite inefficient, it is necessary for a
fast execution of the RAS, Algorithm 1, to pre-compute the sums g + g′. This can be done once in the
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Algorithm 1 Recursive Atom Search: A← RAS(A,S,Σ, B)
for all g ∈ B do
S′ ← Sg
if g ≤ −σ(S′) then
A← A ∪ {S′(−σ(S′))}

end if
Σ′ ← Σ
B′ ← ∅
for all g′ ∈ B do

if g + g′ ∈ Σ then
Σ′ ← Σ′ ∪ {g′}

else
B′ ← B′ ∪ {g′}

end if
end for
if |B′| > 0 then
A← RAS(A,S′,Σ′, B′)

end if
end for
return A

Algorithm 2 Atoms Computation Algorithm 1: A(G)← ACA1(G)
A← {0}
for all g ∈ G \ {0} do

if g ≤ −g then
A← A ∪ {g(−g)}

end if
Σ← {0, g}
B ← G \ {0,−g}
S ← g
if |B| > 0 then
A← RAS(A,S,Σ, B)

end if
end for
return A

ACA1, Algorithm 2, before the main loop. For additional details on speeding up these types of algorithms
by special alignment of the pre-computed data and on the parallelization aspects, the reader is referred to
[17, Section 3].

5.3. The set of atoms of a T -block monoid.

Lemma 5.10. Let G be a finite additive abelian group, T a reduced atomic monoid, ι : T → G a
homomorphism, and B(G,T, ι) ⊂ F(G)×T the T -block monoid over G defined by ι. Furthermore, suppose
each class in G contains some p ∈ P , and let ῑ : Z(T )→ F(G) be the homomorphism generated by the
extension of ι onto Z(T ) such that, for a factorization z = a1 · . . . · an ∈ Z(T ) with ai ∈ A(T ) for i ∈ [1, n],
we have ῑ(z) = ι(a1) · . . . · ι(an).
Then we have

(5.2) A(B(G,T, ι)) =
{Sπ(z) | S ∈ F(G), z ∈ Z(T ), Sῑ(z) ∈ A(G),@n ≥ 2 : ∃Si ∈ F(G), zi ∈ Z(T )

with Siῑ(zi) ∈ A(G) for i ∈ [1, n] : S1π(z1) · . . . · Snπ(zn) = Sπ(z)}

Proof. Clearly, every atom a ∈ A(B(G,T, ι)) is of the form a = Sπ(z) with S ∈ F(G), z ∈ Z(T ), and
Sῑ(z) ∈ A(G). Now suppose we have n ∈ [2,D(G)], Si ∈ F(G), zi ∈ Z(T ), Siῑ(zi) ∈ A(G) for i ∈ [1, n] and
Sπ(z) = S1π(z1) · . . . ·Snπ(zn). Obviously then, a /∈ A(B(G,T, ι)). Now the other inclusion is obvious. �

In general, it is very hard to calculate A(B(G,T, ι)) explicitly by the characterization in (5.2). But
if we restrict ourselves to a finite group G and a finitely generated reduced monoid T such that A(G),
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A(T ), and ι(a) for a ∈ A(T ) are all known explicitly, we can formulate the ACA2, Algorithm 3, for the
computation of the set of atoms of a T -block monoid.

Algorithm 3 Atoms Computation Algorithm 2: A(B(G,T, ι))← ACA2(G,T,A(G),A(T ), ι)
A← ∅
D ← 0
for all S ∈ A(G) do

if |S| > D then
D ← |S|

end if
A← A ∪ {(S, 1)}

end for
F0 ← ∅
for all a ∈ A(T ) do

for all (S, 1) ∈ A do
if ι(a) | S then
F0 ← F0 ∪ {(ι(a)−1S, a)}

end if
end for

end for
E ← ∅
n← 1
while n < D and Fn−1 6= ∅ do
E ← E ∪ Fn−1
E ← EF0
Fn ← ∅
for all a ∈ A(T ) do

for all (S, b) ∈ A do
if ι(a) | S then
Fn ← Fn ∪ {(ι(a)−1S, ab)

end if
end for

end for
n← n+ 1

end while
return A ∪ F0 ∪ . . . ∪ Fn−1

5.4. Computing arithmetical invariants of a T -block monoid.
Throughout this section, we implicitly use the isomorphism defined in (5.1). Thus we only have to work
with submonoids

S ⊂ Zm × Z/n1Z× . . .× Z/nrZ with m, r ∈ N0 and n1, . . . , nr ∈ N

such that S ∼= ϕ(B(G,T, ι)), where G is an additively written finite abelian group, T is a product of finitely
many reduced finitely primary monoids of rank 1, ι : G→ T is a homomorphism, and ϕ is the isomorphism
defined in (5.1). If T is not the product of finitely many reduced finitely primary monoids of rank 1, then T
would not be finitely generated. Now we know A(S) explicitly, since, obviously, A(S) = ϕ(A(B(G,T, ι)))
and A(B(G,T, ι)) can be computed explicitly by the ACA2; see Algorithm 3.

For the computation of the tame degree, we use the definition of the distance of factorizations and [24,
Theorem 19.2]; for additional reference on this computation, see [6, Section 4].

Now we are ready to describe the computation step by step.

5.4.1. Finding the elements of A(∼S).
The first step is finding the elements of A(∼S) explicitly. Unfortunately, this is a very hard task. Probably,
the most efficient way is the following one as described in [5, Sections 1 and 2].

1. Since we know A(S) explicitly, we can write the atoms of S in their coordinates as vectors:

A(S) = {(a(1)
1 , . . . , a(1)

m , a
(1)
m+1 mod n1, . . . , a

(1)
m+r mod nr), . . .} .
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2. By [5, Section 2], finding the elements of A(∼S) is equivalent to determining the minimal positive
solutions of the following system of linear diophantine equations:

(5.3)

x1a
(1)
1 + . . . + xka

(k)
1 − y1a

(1)
1 − . . . − yka

(k)
1 = 0

...
...

...
...

...
x1a

(1)
m + . . . + xka

(k)
m − y1a

(1)
m − . . . − yka

(k)
m = 0

x1a
(1)
m+1 + . . . + xka

(k)
m+1 − y1a

(1)
m+1 − . . . − yka

(k)
m+1 ≡ 0 mod n1

...
...

...
...

...
x1a

(1)
m+r + . . . + xka

(k)
m+r − y1a

(1)
m+r − . . . − yka

(k)
m+r ≡ 0 mod nr

We write a solution (x1, . . . , xk, y1, . . . , yk) as ((x1, . . . , xk), (y1, . . . , yk)).
3. Again, by [5, Section 2] and [27, Section 2], finding the set of minimal positive solutions is equivalent

to finding the set of minimal positive solutions for the following enlarged system and then projecting
back by the map and removing the zero element (if appearing after the projection) from the set of
solutions:

(5.4)

x1a
(1)
1 + . . . − y1a

(1)
1 − . . . = 0

...
...

...
x1a

(1)
m + . . . − y1a

(1)
m − . . . = 0

x1a
(1)
m+1 + . . . − y1a

(1)
m+1 − . . . + xk+1n1 − yk+1n1 = 0

...
...

...
...

...
x1a

(1)
m+r + . . . − y1a

(1)
m+r − . . . + xk+rnr − yk+rnr = 0

Φ :
{

Nk+r
0 × Nk+r

0 → Nk0 × Nk0
((x1, . . . , xk+r), (y1, . . . , yk+r)) 7→ ((x1, . . . , xk), (y1, . . . , yk)).

One of the most efficient algorithms for finding these solutions is due to Contejean and Devie;
see [7]. Nevertheless, this might take a very long time since the problem of determining the set of
all minimal non-negative solutions of a system of linear diophantine equations is well known to be
NP-complete.

5.4.2. Removing unnecessary elements.
Clearly, elements of the form ((0, . . . , 0, 1, 0, . . . , 0), (0, . . . , 0, 1, 0, . . . , 0)) are minimal solutions. But as
elements of A(∼S), these elements do not carry any information about the arithmetic of S. Therefore
we may simply drop them. Since, for any two factorizations, (x, y) ∈ Z(S) is equivalent to (y, x) ∈ Z(S),
we may also reduce the number of pairs by a factor of two. This smaller set will be denoted by
A(∼S)∗ = {((x1, . . . , xk), (y1, . . . , yk)), . . .}.

5.4.3. Computing the elasticity.
By our finiteness assumptions on T , i.e., since T is finitely generated, we know this set is finite. Thus we
can simply compute the elasticity using [24, Proposition 14.2] as follows:

ρ(S) = max
{
x1 + . . .+ xk
y1 + . . .+ yk

,
y1 + . . .+ yk
x1 + . . .+ xk

∣∣∣∣ ((x1, . . . , xk), (y1, . . . , yk)) ∈ A(∼S)∗
}
.

5.4.4. Computing the catenary degree.
By Lemma 2.7.2, we need only consider elements a ∈ S such that their factorizations appear as part of an
element of A(∼S) and such that their sets of factorizations consist of more than one R-equivalence class.
Then we get the catenary degree by taking the maximum over µ(a) for all those a ∈ S.

5.4.5. Computing the tame degree.
After having computed Z(a) for all a ∈ S such that Aa(∼S) 6= ∅, we can apply [24, Theorem 19.1] for
every u ∈ A(S). Since there are only finitely many, we get the tame degree as the maximum of these
values.
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Algorithm 4 Recursive R-Class Finder: R ← RCF(R,Z = {z1, . . . , zn})
r ← {z1}
Z← Z \ {z1}
n← n− 1
Z = {z1, . . . , zn} {renumber}
i← 1
while i < n do

for i = 1 to n do
if gcd(zi, x) 6= 1 for some x ∈ r then
r ← r ∪ {zi}
Z← Z \ {zi}
n← n− 1
Z = {z1, . . . , zn} {renumber}
break

end if
end for

end while
R∪ {r}
if Z 6= ∅ then
R ← RCF(R,Z)

end if
return R

Algorithm 5 Catenary degree Computation Algorithm: c(S)← CCA(A(S),A(∼S)∗)
A← ∅
for all (x, y) ∈ A(∼S)∗ do
A← A ∪ {π(x)}

end for
c← 0
for all a ∈ A do
Ra ← RCF(Z(a))
if |Ra| > 1 then
µ← min{|x| | Ra}
if c < µ then
c← µ

end if
end if

end for
return c

5.4.6. Computing the monotone catenary degree.
For computing the monotone catenary degree, we compute the equal catenary degree ceq(S) and the
adjacent catenary degree cad(S). We start with the adjacent catenary degree and proceed like in 5.4.1.
We use the fact that ∼S,mon= {(x, y) ∈∼S | |x| ≤ |y|} and again [5, Section 2]. Now finding the elements
of A(∼S,mon) is equivalent to determining the minimal positive solutions of a system of linear diophantine
equations.

Before we construct this finite system of linear diophantine equations explicitly, we formulate a short
lemma.

Lemma 5.11. Let H be a finitely generated monoid.
Then ∼H,mon is a finitely generated Krull monoid.

Proof. Let H be a finitely generated monoid. Since ∼H⊂ Z(H)×Z(H) is then a saturated submonoid of a
finitely generated monoid, ∼H is finitely generated by [14, Proposition 2.7.5]. Now assume ∼H has n ∈ N
generators. Then the atoms of ∼H can be described as the minimal solutions of a system of finitely many,
say k, linear diophantine equations in 2n variables as in step 5.4.1 above. Then the atoms of ∼H,mon
can be described as the minimal solutions of a system of k + 1 linear diophantine equations in 2n + 1
variables—see below for the explicit description of this system of linear diophantine equations. Thus H is
a finitely generated Krull monoid by [14, Theorem 2.7.14]. �
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The system is (5.3), with one additional variable z and one equation, namely,

x1 + . . .+ xk − y1 − . . .− yk + z = 0.

The coefficients at z are zero in all other equations. Now we have two possibilities.
• Either we proceed by the same steps as in 5.4.1 and solve this directly
• or we use the incremental version of the algorithm of Devie and Contejoud (see [7, Section 9]) and

the set A(∼S), which we already computed in 5.4.1.
Next we can reduce the set of relations which we must consider, as in 5.4.2. By Theorem 3.2.4, we have
to consider only elements a ∈ S such that Aa(∼S,mon) 6= ∅. Then we get the adjacent catenary degree by
taking the maximum over µad(a) for all those a. For the computation of the equal catenary degree, we
must know the elements of A(∼S,eq). But these are already known, since A(∼S,eq) ⊂ A(∼S,mon). Here
we can again reduce the set of relations which we must consider, as in 5.4.2. By Theorem 3.2.4, we have
to consider only elements a ∈ S such that Aa(∼S,eq) 6= ∅ and |Ra,k| > 1 for some k ∈ L(a). Now this can
be done by applying the RCF, Algorithm 4, to Zk(a) instead of Z(a). Then we get the equal catenary
degree by taking the maximum over µeq(a) for all those a.

Now we find the monotone catenary degree by cmon(S) = max{cad(S), ceq(S)}.

5.4.7. Reducing the computation time for the catenary degree.
If we are only interested in the computation of the catenary degree, we can speed up the very time
consuming computations in Step 5.4.1 in the following way. In favor of Lemma 2.7.2, we may re-
strict our search for minimal solutions of the system of linear diophantine equations (5.4) to solutions
(x1, . . . , xk+r, y1, . . . , yk+r) such that

∑k
i=1 xi ≤ c(S) and

∑k
i=1 yi ≤ c(S). Of course, we do not know c(S)

a priori, but we may replace it with any upper bound—the better the bound, the faster the computation.
In our special situation of T -block monoids, we can find a reasonably good bound by [14, Theorem 3.6.4.1]
and by [14, Proposition 3.6.6]. Formulated in our terminology, these results read as follows.

Theorem 5.12. Let G be an additively written abelian group, T a reduced finitely generated monoid,
ι : T → G a homomorphism, and B(G,T, ι) ⊂ F(G)× T the T -block monoid over G defined by ι. Then

1. ρ(B(G,T, ι),F(G)× T ) ≤ ρ(T ).
2. c(B(G,T, ι)) ≤ ρ(T )D(G) max{c(T ),D(G)}.

Now we set C = ρ(T )D(G) max{c(T ),D(G)} for the upper bound. Though this does not speed up the
search for minimal solutions itself that much, it is a very efficient (additional) termination criterion in our
variant of the algorithm due to Contejean and Devie; for reference on the originally proposed algorithm,
see [7].
Unfortunately, this method has one drawback for the computation of the elasticity and the tame degree.
As we no longer compute all minimal solutions to our system of linear diophantine equations, we no
longer compute all elements in A(∼S), and therefore we cannot compute more than a lower bound for the
elasticity in Step 5.4.3 and for the tame degree in Step 5.4.5.

5.4.8. Computing the elasticity from an appropriate subset of A(∼S).
In [8], Domenjoud proposed an algorithm for computing the set of minimal solutions of a system of
linear diophantine equations, which computes the set of minimal solutions with minimal support in a first
step. All other minimal solutions can then be found by “appropriate” linear combinations of them using
non-negative rational coefficients. With this interesting fact in mind, we consider the following lemma.

Definition 5.13. Let H be an atomic monoid. For x ∈ Z(H), we set

supp(x) = {u ∈ A(Hred) | u | x}.

Lemma 5.14. Let H be a finitely generated monoid. Then

ρ(H) = sup
{
|x|
|y|

∣∣∣∣ (x, y) ∈ A′(∼H)
}
,

where A′(∼H) = {(x, y) ∈ A(∼H) | supp(x) ∪ supp(y) is minimal}.

Proof. Let (x, y) ∈ A(∼H). Then there are n ∈ N, (xi, yi) ∈ A′(∼H), and qi ∈ Q with 0 ≤ qi < 1 for
i ∈ [1, n] such that

(x, y) =
n∏
i=1

(xi, yi)qi .
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Such a decomposition exists, since the equivalent one exists for the set of solutions of the associated system
of linear diophantine equations, see [8, Theorem 3]. When we pass to the lengths, we find |x| =

∑n
i=1 qi|xi|

and |y| =
∑n
i=1 qi|yi|. This yields

|x|
|y|
· |y| = |x| =

n∑
i=1

qi|xi| =
n∑
i=1

qi
|xi|
|yi|
|yi| ≤

nmax
i=1

|xi|
|yi|

n∑
i=1

qi|yi| =
nmax
i=1

|xi|
|yi|
· |y| .

Thus we find
|x|
|y|
≤ nmax

i=1

|xi|
|yi|

.

Since A′(∼H) ⊂ A(∼H), the assertion now follows by [24, Proposition 14.2]. �

Thus we can restrict ourselves to minimal solutions with minimal support for computing the elasticity.
As far as computational performance is concerned, the most interesting point of this approach is that there
are straightforward optimizations of Domenjoud’s algorithm for symmetric systems of linear diophantine
equations like the one in (5.4).

5.5. Three explicit examples.
Let p ∈ P be a prime. Let R = Fp[Xe1 , Xe2 ] with e1, e2 ≥ 2. Then R is a one-dimensional noetherian
domain with integral closure R̂ = Fp[X] and conductor f = (R : R̂) = Xf R̂, where X ∈ R̂ is a prime
element and f is the frobenius number of the numerical monoid generated by e1 and e2. Thus R is an
order in the Dedekind domain R̂, and XR̂ is the only maximal ideal of R̂ containing f. Furthermore,
R̂× = R× = F×p . By the computations in [14, Special case 3.2 in Example 3.7.3], we have G = Pic(R) ∼= Fp.

For a more detailed presentation of the explicit computations, the reader is referred to [25, Section
2.3.5].

5.5.1. F3[X2, X3].
Now let p = 3. Since |G| = 3, we write G = {0, e, e′}. Clearly—or by applying the ACA1, see Algorithm 2—
we have A(G) = {0, ee′, e3, e′3}. Now we apply [14, Theorem 3.7.1] and switch to the block monoid, which
is a T -block monoid over G, say B(G,T, ι) ⊂ F(G)× T , where T is the reduced finitely primary monoid
generated by A(T ) = {Xng | n ∈ {2, 3}, g ∈ G} and ι is the uniquely determinated homomorphism
ι : G→ T such that ι(Xng) = g for all n ∈ {2, 3} and g ∈ G.
Now we apply the ACA2, see Algorithm 3, and find

A(B(G,T, ι)) = {(0, 1), (ee′, 1), (e3, 1), (e′3, 1), (1, X20), (1, X30), (e, X2e′), (e, X3e′),

(e′, X2e), (e′, X3e), (e2, X2e), (e2, X3e), (e′2, X2e′), (e′2, X3e′)}.

Using the construction from the beginning of Subsection 5.4, we find

T̂ ∼= N0 × Z/3Z and B(G,T, ι) ∼= S ⊂ N4
0 × Z/3Z .

Then, for the set of atoms, we find

A(S) = {(1, 0, 0, 0, 0̄), (0, 1, 1, 0, 0̄), (0, 3, 0, 0, 0̄), (0, 0, 3, 0, 0̄), (0, 0, 0, 2, 0̄),
(0, 0, 0, 3, 0̄), (0, 1, 0, 2, 2̄), (0, 1, 0, 3, 2̄), (0, 0, 1, 2, 1̄), (0, 0, 1, 3, 1̄),
(0, 2, 0, 2, 1̄), (0, 2, 0, 3, 1̄), (0, 0, 2, 2, 2̄), (0, 0, 2, 3, 2̄)} .

Since the atom (1, 0, 0, 0, 0̄) is prime, we can restrict to a monoid S̄ ⊂ N3
0 × Z/3Z. Now we can find

everything by using the algorithms presented at the end of Subsection 5.4. Even in the modified version
of the algorithm in Step 5.4.1—here the bound is 13.5—we find about 7,500 minimal representations to
consider after the reduction in Step 5.4.2.

From those, we get c(F3[X2, X3]) = 3 in Step 5.4.4. Since we did not compute all minimal solutions,
we find t(F3[X2, X3]) ≥ 4 in Step 5.4.5.
By using the alternative approach from Step 5.4.8, we find ρ(F3[X2, X3]) = 5

2 . Note that this particular
result on the elasticity can also be obtained by [14, Example 3.7.3, Special Case 3.2].



A CHARACTERIZATION OF ARITHMETICAL INVARIANTS BY THE MONOID OF RELATIONS II 19

5.5.2. F2[X2, X3].
Let p = 2. Then |G| = 2, so write G = {0, e}. Obviously—or by applying the ACA1, see Algorithm 2—we
have A(G) = {0, e2}. Now we apply [14, Theorem 3.7.1] as in the case p = 3 and switch to the block
monoid, which is a T -block monoid over G, say B(G,T, ι) ⊂ F(G)× T , where T is the reduced finitely
primary monoid generated by A(T ) = {Xng | n ∈ {2, 3}, g ∈ G} and ι is the uniquely determinated
homomorphism ι : G→ T such that ι(Xng) = g for all n ∈ {2, 3} and g ∈ G.
Now we apply the ACA2, see Algorithm 3, as before and find

A(B(G,T, ι)) = {(0, 1), (e2, 1), (1, X20), (1, X30), (e, X2e), (e, X3e)} .
Using the construction from the beginning of Subsection 5.4, we find

T̂ ∼= N0 × Z/2Z and B(G,T, ι) ∼= S ⊂ N3
0 × Z/2Z .

Then, for the set of atoms, we find
A(S) = {(1, 0, 0, 0̄), (0, 2, 0, 0̄), (0, 0, 2, 0̄), (0, 0, 3, 0̄), (0, 1, 2, 1̄), (0, 1, 3, 1̄)} .

Since the atom (1, 0, 0, 0̄) is prime, we can use the same arguments as in Lemma 5.4.4 and restrict to a
monoid S̄ ⊂ N2

0 × Z/2Z with a reduced set of atoms.
Since, in this case, Step 5.4.1 can be performed easily without any bound, we compute all atoms. Given

this list, we immediately find ρ(F2[X2, X3]) = 2 in Step 5.4.3. Note that this particular result on the
elasticity can also be obtained by [14, Example 3.7.3, Special Case 3.2].
Now we proceed with Step 5.4.4 and we deduce c(F2[X2, X3]) = 3 and D(F2) + 1 + t(S) = 6 ≥
t(F2[X2, X3]) ≥ t(S) = 3.

Next, we compute the monotone catenary degree. For this, we proceed as in Step 5.4.6 and find
cad(S) = 3 and ceq(S) = 3, and thus cmon(F2[X2, X3]) = cmon(S) = 3.

5.5.3. F2[X2, X5].
The results in this case differ slightly from then ones we obtained above. We have |G| = 2, say G = {0, e}.
Again, we have A(G) = {0, e2}. Now we apply [14, Theorem 3.7.1] as before and switch to the block
monoid, which is a T -block monoid over G, say B(G,T, ι) ⊂ F(G)× T , where T is the reduced finitely
primary monoid generated by A(T ) = {Xng | n ∈ {2, 5}, g ∈ G} and ι is the uniquely determinated
homomorphism ι : G→ T such that ι(Xng) = g for all n ∈ {2, 5} and g ∈ G.
Now we apply the ACA2, see Algorithm 3, as before and find

A(B(G,T, ι)) = {(0, 1), (e2, 1), (1, X20), (1, X50), (e, X2e), (e, X5e)} .
Using the construction from the beginning of Subsection 5.4, we find

T̂ ∼= N0 × Z/2Z and B(G,T, ι) ∼= S ⊂ N3
0 × Z/2Z .

Then, for the set of atoms, we find
A(S) = {(1, 0, 0, 0̄), (0, 2, 0, 0̄), (0, 0, 2, 1̄), (0, 0, 5, 1̄), (0, 1, 2, 1̄), (0, 1, 5, 1̄)} .

Since the atom (1, 0, 0, 0̄) is prime, we can use the same arguments as in Lemma 5.4.4 and restrict to a
monoid S̄ ⊂ N2

0 × Z/2Z with a reduced set of atoms.
Since, in this case, Step 5.4.1 can be performed without any bound, we compute all atoms. Now,

we find a list of 25 atoms after Step 5.4.2. Given this list, we immediately find ρ(F2[X2, X5]) = 3 in
Step 5.4.3. Now we proceed with Step 5.4.4 and obtain t(S) = 4, c(F2[X2, X5]) = 5, and D(F2) +
1 + t(S) = 7 ≥ t(F2[X2, X5]) ≥ max{t(S), c(F2[X2, X5])} = 5. Next, we compute the monotone
catenary degree. For this, we proceed as in Step 5.4.6 and start with the adjacent catenary degree.
We find cad(S) = 5. Next we compute the equal catenary degree and find ceq(S) = 6. Now we find
cmon(F2[X2, X5]) = cmon(S) = 6 > 5 = c(F2[X2, X5]).
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[4] S. T. Chapman, P. A. Garćıa-Sánchez, and D. Llena. The catenary and tame degree of numerical monoids. Forum

Math., 21(1):117–129, 2009.
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